<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 業(yè)界動態(tài) > 深度學(xué)習(xí)首選GPU還是FPGA?

          深度學(xué)習(xí)首選GPU還是FPGA?

          作者: 時間:2018-12-29 來源:eetop 收藏

            人工智能

          本文引用地址:http://www.ex-cimer.com/article/201812/396194.htm

            人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。

            人工智能是計算機科學(xué)的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容器”。

            人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。

            人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機器學(xué)習(xí),計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。但不同的時代、不同的人對這種“復(fù)雜工作”的理解是不同的。

            優(yōu)勢

            1.從峰值性能來說,(10Tflops)遠遠高于(<1TFlops);

            2.相對于還有一個優(yōu)勢就是內(nèi)存接口, GPU的內(nèi)存接口(傳統(tǒng)的GDDR5,最近更是用上了HBM和HBM2)的帶寬遠好于的傳統(tǒng)DDR接口(大約帶寬高4-5倍);

            3.功耗方面,雖然GPU的功耗遠大于FPGA的功耗,但是如果要比較功耗應(yīng)該比較在執(zhí)行效率相同時需要的功耗。如果FPGA的架構(gòu)優(yōu)化能做到很好以致于一塊FPGA的平均性能能夠接近一塊GPU,那么FPGA方案的總功耗遠小于GPU,散熱問題可以大大減輕。反之,如果需要二十塊FPGA才能實現(xiàn)一塊GPU的平均性能,那么FPGA在功耗方面并沒有優(yōu)勢。

            4.FPGA缺點有三點:

            第一,基本單元的計算能力有限。為了實現(xiàn)可重構(gòu)特性,F(xiàn)PGA 內(nèi)部有大量極細粒度的基本單元,但是每個單元的計算能力(主要依靠LUT 查找表)都遠遠低于CPU 和GPU 中的ALU模塊。

            第二,速度和功耗相對專用定制芯片(ASIC)仍然存在不小差距。

            第三,F(xiàn)PGA 價格較為昂貴,在規(guī)模放量的情況下單塊FPGA 的成本要遠高于專用定制芯片。最后誰能勝出, 完全取決于FPGA架構(gòu)優(yōu)化能否彌補峰值性能的劣勢。

            5.個人更推薦: CPU+FPGA的組合模式; 其中FPGA用于整形計算,cpu進行浮點計算和調(diào)度,此組合的擁有更高的單位功耗性能和更低的時延。最后更想GPU穩(wěn)定開放,發(fā)揮其長處, 達到真正的物美價廉!

            FPGA優(yōu)勢

            人工智能目前仍處于早期階段,未來人工智能的主戰(zhàn)場是在推理環(huán)節(jié),遠沒有爆發(fā)。未來勝負尚未可知,各家技術(shù)路線都有機會勝出。目前英偉達的GPU在訓(xùn)練場景中占據(jù)著絕對領(lǐng)導(dǎo)地位,但是在未來,專注于推理環(huán)節(jié)的FPGA必將會發(fā)揮巨大的價值。

            FPGA和GPU內(nèi)都有大量的計算單元,因此它們的計算能力都很強。在進行神經(jīng)網(wǎng)絡(luò)運算的時候,兩者的速度會比CPU快很多。但是GPU由于架構(gòu)固定,硬件原生支持的指令也就固定了,而FPGA則是可編程的。其可編程性是關(guān)鍵,因為它讓軟件與終端應(yīng)用公司能夠提供與其競爭對手不同的解決方案,并且能夠靈活地針對自己所用的算法修改電路。

            在平均性能方面,GPU遜于FPGA,F(xiàn)PGA可以根據(jù)特定的應(yīng)用去編程硬件,例如如果應(yīng)用里面的加法運算非常多就可以把大量的邏輯資源去實現(xiàn)加法器,而GPU一旦設(shè)計完就不能改動了,所以不能根據(jù)應(yīng)用去調(diào)整硬件資源。

            目前機器學(xué)習(xí)大多使用SIMD架構(gòu),即只需一條指令可以平行處理大量數(shù)據(jù),因此用GPU很適合。但是有些應(yīng)用是MISD,即單一數(shù)據(jù)需要用許多條指令平行處理,這種情況下用FPGA做一個MISD的架構(gòu)就會比GPU有優(yōu)勢。 所以,對于平均性能,看的就是FPGA加速器架構(gòu)上的優(yōu)勢是否能彌補運行速度上的劣勢。如果FPGA上的架構(gòu)優(yōu)化可以帶來相比GPU架構(gòu)兩到三個數(shù)量級的優(yōu)勢,那么FPGA在平均性能上會好于GPU。

            在功耗能效比方面,同樣由于FPGA的靈活性,在架構(gòu)優(yōu)化到很好時,一塊FPGA的平均性能能夠接近一塊GPU,那么FPGA方案的總功耗遠小于GPU,散熱問題可以大大減輕。 能效比的比較也是類似,能效指的是完成程序執(zhí)行消耗的能量,而能量消耗等于功耗乘以程序的執(zhí)行時間。雖然GPU的功耗遠大于FPGA的功耗,但是如果FPGA執(zhí)行相同程序需要的時間比GPU長幾十倍,那FPGA在能效比上就沒有優(yōu)勢了;反之如果FPGA上實現(xiàn)的硬件架構(gòu)優(yōu)化得很適合特定的機器學(xué)習(xí)應(yīng)用,執(zhí)行算法所需的時間僅僅是GPU的幾倍或甚至于接近GPU,那么FPGA的能效比就會比GPU強。

            在峰值性能比方面,雖然GPU的峰值性能(10Tflops)遠大于FPGA的峰值性能(<1Tflops),但針對特定的場景來講吞吐量并不比GPU差。




          關(guān)鍵詞: GPU FPGA

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();