<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 物聯(lián)網(wǎng)與傳感器 > 業(yè)界動態(tài) > 傳感器在工業(yè)4.0預(yù)測性維護(hù)中的應(yīng)用

          傳感器在工業(yè)4.0預(yù)測性維護(hù)中的應(yīng)用

          作者: 時間:2022-04-21 來源:電子產(chǎn)品世界 收藏

          工業(yè)預(yù)測性維護(hù)概念存在已久,最早可以追溯到人們第一次說“機(jī)器很快就會壞了”的時候。從給手表內(nèi)部的軸承加注潤滑油,到養(yǎng)護(hù)維修大型發(fā)電設(shè)備,從簡單的家電,到復(fù)雜的空間站,預(yù)測性維護(hù)無處不在。

          本文引用地址:http://www.ex-cimer.com/article/202204/433347.htm

          早期預(yù)測性維護(hù)在很大程度上依賴技工的專長和直覺來解決問題或診斷故障,而今天的先進(jìn)診斷設(shè)備和工業(yè) 4.0 技術(shù)增加了電子傳感器和機(jī)械傳感器,能夠更準(zhǔn)確地發(fā)現(xiàn)并診斷問題。傳感器已成為預(yù)測性維護(hù)應(yīng)用的重要組件。

          1650527035921401.png

          圖1—工業(yè) 4.0 中的典型預(yù)測性維護(hù)應(yīng)用

          作為工業(yè) 4.0 的重要組成部分,本地決策系統(tǒng)在設(shè)備內(nèi)或附近收集傳感器數(shù)據(jù),以此為依據(jù)做出正確判斷,幫助檢修人員提前發(fā)現(xiàn)昂貴、復(fù)雜的可能是遠(yuǎn)程設(shè)備出現(xiàn)的小問題,避免釀成大事故。這個功能要求傳感器必須具有邊緣處理[13]能力和人工智能 (AI),因?yàn)槿斯ぶ悄苁穷A(yù)測性維護(hù)應(yīng)用的關(guān)鍵技術(shù)。通過直接在傳感器或主控制器上實(shí)現(xiàn)AI 和邊緣處理,例如,STM32[8] 中的 FP-AI-MONITOR1[7],可以在本地執(zhí)行數(shù)據(jù)分析決策。

          圖1所示是一個典型的預(yù)測性維護(hù)應(yīng)用示意圖,其中,傳感器檢測設(shè)備產(chǎn)生的信息并將數(shù)據(jù)傳給主控制器。在工業(yè)3.0 中,描述機(jī)器狀況的原始傳感器數(shù)據(jù)直接傳輸給操作員,不涉及任何本地處理或決策任務(wù)。在工業(yè) 4.0 中,主控制器在本地處理傳感數(shù)據(jù),在本地做出決策。如果發(fā)送條件沒有滿足特定的通知標(biāo)準(zhǔn),主控制器允許無線連接模塊部分睡眠。操作員僅在收到云端的通知消息后才開始介入。這種方法減少了傳輸?shù)皆贫说臄?shù)據(jù)量,降低了本地傳感器節(jié)點(diǎn)的功耗。

          更深入地講,實(shí)現(xiàn)這個感知決策模塊有四個關(guān)鍵步驟: 重要參數(shù)識別; 數(shù)據(jù)分析; 傳感器選擇和決策樹位置選擇。

          1)重要參數(shù)識別

          許多參數(shù)可以指示機(jī)器的健康狀況。設(shè)計(jì)人員需要根據(jù)這些參數(shù)的特性和預(yù)測機(jī)器狀態(tài)的能力來篩選重要參數(shù)。在圖 2 的應(yīng)用場景中,聲學(xué)、溫度和物理振動加速度等參數(shù)都可以指示機(jī)器的重型軸承的磨損情況。設(shè)計(jì)人員將研究分析哪些參數(shù)可以用于預(yù)測軸承 60%健康狀態(tài)。最理想的是,只用一個參數(shù)就足以提供最有意義的信息,并讓決策樹能夠判斷軸承健康狀況已達(dá)到60%。

          在這個示例中,機(jī)器的健康狀況分為四個階段,如表1所示: 

          表1——機(jī)器健康狀態(tài)分期

          健康標(biāo)志

          時間節(jié)點(diǎn)

          機(jī)器狀況

          措施

          80%

          t1

          開始磨損

          維修信號

          60%

          t2

          摩擦力增加

          需要維修

          50%

          t3

          軸承開始破裂

          需要更換

          <30%

          t4

          緊急更換

          嚴(yán)重事故

          1650527059396977.png

          圖2–重要參數(shù)與機(jī)器健康狀況的關(guān)系

          設(shè)定當(dāng)重型軸承達(dá)到60%健康狀況時發(fā)出預(yù)警,我們捕獲了加速度、超聲波和溫度與時間(周)的關(guān)系并繪制成圖,以便分析研究重要參數(shù),如圖2所示,三個參數(shù)都可以指示軸承的磨損狀況。研究發(fā)現(xiàn)如下:

          ●   當(dāng)軸承在t3 之后進(jìn)入損壞階段時,加速度數(shù)據(jù)給出強(qiáng)烈信號。但是,它不能很好地跟蹤 t3之前的健康狀態(tài),也就是不能有效記錄機(jī)器達(dá)到50%健康狀況前的狀況,這意味著我們無法在軸承損壞前準(zhǔn)確地預(yù)判機(jī)器的健康狀況,所以,僅依靠加速度計(jì)的指示信息不足以預(yù)測早期磨損程度。

          ●   直到軸承進(jìn)入損壞階段t4,溫度數(shù)據(jù)才能準(zhǔn)確地跟蹤軸承的健康狀況。不管什么原因引起軸承損壞,溫度參數(shù)都不能在摩擦力急劇增加之前給出軸承損壞的明顯信號。

          ●   超聲參數(shù)可以有效地跟蹤軸承的健康狀況,最早在 t1 時就能發(fā)出信號。隨著摩擦力增加,當(dāng)軸承達(dá)到60%健康狀況時,它會發(fā)出一個明顯信號。 然而,從繪制的數(shù)據(jù)圖看,當(dāng)軸承健康在 t3 左右下降到 50% 以下時,超聲波信號開始失去對機(jī)器健康狀況的跟蹤,這是因?yàn)檩S承嚴(yán)重磨損并破裂,極大地改變了軸承的特性,并導(dǎo)致軸承的振動曲線超出了超聲掃描范圍。這個階段的強(qiáng)烈的振動恰好可以被加速度計(jì)感知到。

          從這個示例不難看出,超聲檢測是預(yù)測性維護(hù)實(shí)現(xiàn)60%健康狀況預(yù)警的重要參數(shù)。

          2)數(shù)據(jù)分析

          一旦確定了重要參數(shù),下一步就是研究數(shù)據(jù)概要信息。設(shè)計(jì)人員必須評測不同的數(shù)據(jù)處理能力和 人工智能算法,才能可靠地預(yù)測機(jī)器的健康狀況。

          有許多數(shù)據(jù)處理方法可用實(shí)現(xiàn)預(yù)測性維護(hù)應(yīng)用,這些數(shù)據(jù)處理方法可分為兩大類:時域和頻域[9]。每種方法都有各種的優(yōu)缺點(diǎn)。

          ●   時域方法簡單易懂,算力要求低。傳感器的輸出始終在時域范圍內(nèi)。時域信號的均方根 (RMS)、平均值或峰值檢測是典型的跟蹤值。比較原始數(shù)據(jù)或處理后數(shù)據(jù)的閾值或幅度可以獲得決策標(biāo)志。這種方法的缺點(diǎn)是它僅適用于簡單的波形分析。在實(shí)際工業(yè)應(yīng)用中,有些數(shù)據(jù)分析是很復(fù)雜的,因?yàn)樗鼈兛赡馨煌瑱C(jī)械部件的振動和其他機(jī)器的環(huán)境振動。圖 3 所示是在時域中的數(shù)據(jù)分析示例。

          1650527085457978.png

          圖3-時域加速波形示例

          在這個例子中,電機(jī)不平衡產(chǎn)生的振動幅度遠(yuǎn)大于輸出軸產(chǎn)生的振動幅度。如果采用RMS或平均值或其他的時域信號處理方法,傳感器是不能有效地識別輸出軸的振動程度。

          1650527108241267.png

          圖4-由多個波形組成的復(fù)雜波形

          ●   不過,有一個強(qiáng)大的信號處理方法可以管理復(fù)雜的信號。這種類型的復(fù)雜波形是由多個簡單波形組成,如圖 4 所示??焖俑道锶~變換 (FFT) 是一個有效的波形分析工具,可將時域數(shù)據(jù)轉(zhuǎn)換為頻域數(shù)據(jù),把不同部件產(chǎn)生的振動置于不同頻譜中,如圖 5 所示。

          1650527131406596.png

          圖5-頻譜

          傅里葉變換方法把不同源的振動幅度分成不同的頻譜。除傅里葉變換之外,數(shù)據(jù)處理還可以利用其他的技術(shù)方法,例如,平均值、RMS、峰值、神經(jīng)網(wǎng)絡(luò)等,進(jìn)行準(zhǔn)確的數(shù)據(jù)過濾,為決策樹提供更可靠的數(shù)據(jù),實(shí)現(xiàn)更智能的決策。

          參數(shù)識別和數(shù)據(jù)分析需要一些工具,下面是一些常用工具:

          a)專業(yè)測量工具

          可以使用現(xiàn)成的專業(yè)測量設(shè)備獲取準(zhǔn)確而詳細(xì)的測量數(shù)據(jù),要求苛刻的高精度應(yīng)用強(qiáng)烈推薦采用這類專業(yè)級測量設(shè)備。

          b)評估演示套件

          等傳感器廠商提供免寫軟件的評估套件(圖 6)。這些小主板,例如,STEVAL-MKI109V3,具有插接傳感器板卡的插座。設(shè)計(jì)人員可以選擇把喜歡的傳感器板卡插到主板上。有些廠商還提供用于控制傳感器的圖形用戶界面 (GUI)軟件。這些GUI軟件可以存取傳感器的全部寄存器,配置和檢索數(shù)據(jù),不用寫代碼,并提供實(shí)用的數(shù)據(jù)處理運(yùn)算功能,例如,傅里葉變換FFT 就是其中的一個功能(圖 7)。

          1650527152510084.png

          圖6 --STEVAL-MKI109V3評估板與傳感器板卡的連接

          1650527183823499.png

          圖7--STEVAL-MKI109V3 GUI 截屏

          若評估傳感器的特性功能及其適用性,建議使用免寫代碼的評估板。這些板卡還可以執(zhí)行初始數(shù)據(jù)采集,啟動工程算法和數(shù)據(jù)分析過程。如果到了后面的原型開發(fā)或概念驗(yàn)證階段,傳感器廠商可能會提供另一個強(qiáng)大的開發(fā)工具,以大幅簡化開發(fā)任務(wù),縮短開發(fā)周期。以STWIN 開發(fā)套件為例:

          c)STWIN 無線工業(yè)節(jié)點(diǎn) (STEVAL-STWINKT1B)[10][11]是一個開發(fā)套件和參考設(shè)計(jì),可簡化工況監(jiān)測和預(yù)測性維護(hù)等先進(jìn)工業(yè)物聯(lián)網(wǎng)應(yīng)用原型開發(fā)和測試。

          1650527224705072.png

          圖8--STEVAL-STWINKT1B

          1650527250579016.png

          圖9-SensorTile Box與手機(jī)交互

          STWIN 開發(fā)套件基于STM32超低功耗微控制器,集成各種工業(yè)級傳感器,包括慣性傳感器(振動傳感器、加速度計(jì)、6 軸 IMU、磁傳感器)、環(huán)境傳感器(高精度溫度傳感器、壓力傳感器、濕度傳感器)和高性能傳聲器(數(shù)字傳聲器和模擬傳聲器,有超聲波感應(yīng)功能),支持各類狀態(tài)監(jiān)測,尤其是與振動分析相關(guān)的監(jiān)測。該開發(fā)套件還配有豐富的軟件包和優(yōu)化的固件庫,以及云端儀表板應(yīng)用程序,以加快端到端整體解決方案的設(shè)計(jì)周期。

          該套件板載Bluetooth? 低能耗無線連接模塊,并可以插接一塊Wi-Fi無線連接子板 (STEVAL-STWINWFV1)。有線連接可以通過板載 RS485 收發(fā)器實(shí)現(xiàn)。

          3)傳感器選型

          手頭有了數(shù)據(jù)分析工具后,下一步就是選擇合適的傳感器:

          a) 根據(jù)1) 中發(fā)現(xiàn)的重要參數(shù)選擇傳感器類型

          提供加速度計(jì)、陀螺儀、磁力計(jì)、振動傳感器、傳聲器、壓力傳感器、濕度傳感器、溫度傳感器、激光傳感器、紅外傳感器等各種傳感器。工業(yè)級傳感器通常提供更高的性能和精度、更好的溫度和時間穩(wěn)定性,甚至提供產(chǎn)品生命周期保證。

          b) 根據(jù)2) 中發(fā)現(xiàn)的最大測量范圍和靈敏度或重要頻率范圍(帶寬)選擇傳感器量程;

          每個傳感器都有自己的最大量程和頻響帶寬。設(shè)計(jì)人員必須仔細(xì)研究這兩個參數(shù),以選擇最適合的傳感器。圖 9 顯示了一系列我們?yōu)轭A(yù)測性維護(hù)應(yīng)用場景推薦的型號。

          1650527279795142.png

          圖10–根據(jù)應(yīng)用場景選擇傳感器

          4)決策樹位置選擇

          作為業(yè)界公認(rèn)的 MEMS 技術(shù)先驅(qū),率先在傳感器產(chǎn)品中嵌入邊緣處理功能。設(shè)計(jì)人員可以給傳感器中的邊緣處理分區(qū)或?qū)⒃谥骺刂破鲀?nèi)嵌入決策樹。最佳選擇取決于數(shù)據(jù)處理和決策樹的復(fù)雜程度。意法半導(dǎo)體傳感器中的決策功能分為三類:

          ●   嵌入式簡單邏輯

          意法半導(dǎo)體MEMS 傳感器都有簡單的嵌入式閾值比較邏輯功能。振幅和時間窗口閾值一旦達(dá)到預(yù)設(shè)值,就會觸發(fā)中斷標(biāo)志。

          ●   有限狀態(tài)機(jī) (FSM)[6]

          狀態(tài)機(jī)是用于設(shè)計(jì)邏輯連接的數(shù)學(xué)抽象方法(圖 10)。FSM 是一種由預(yù)定數(shù)量的狀態(tài)和狀態(tài)之間的轉(zhuǎn)換組成的行為模型,類似于流程圖。傳感器可以設(shè)為用戶定義模式一旦滿足,就立即生成決策標(biāo)志。為了便于實(shí)現(xiàn)決策功能,意法半導(dǎo)體有些傳感器嵌入了16 狀態(tài)機(jī)。

          1.jpeg

          圖11-傳感器的嵌入式有限狀態(tài)機(jī)

          ●   機(jī)器學(xué)習(xí)核心 (MLC)[5]

          MLC機(jī)器學(xué)習(xí)核心不是用來處理復(fù)雜數(shù)據(jù)的,所以它不能做有限狀態(tài)機(jī)的工作。MLC 確實(shí)可以將一些原本應(yīng)在應(yīng)用處理器上運(yùn)行的低密度算法轉(zhuǎn)移到 MEMS 傳感器上,從而顯著降低系統(tǒng)功耗。當(dāng)數(shù)據(jù)模式與用戶定義的一個類集合匹配時,MLC 可以識別這些數(shù)據(jù)模式。傳感器使用包含濾波器的可配置的專用計(jì)算模塊和在用戶設(shè)定的固定時間窗口內(nèi)計(jì)算出來的特征來過濾輸入數(shù)據(jù)。機(jī)器學(xué)習(xí)處理的基本原理是通過一系列可配置的節(jié)點(diǎn)以“如果-那么-否則”為條件比較預(yù)設(shè)閾值和“特征”值的邏輯處理過程(圖 11)。

          1650527453366403.jpeg

          圖12-傳感器的MLC內(nèi)的決策過程

          總之,作為工業(yè) 4.0應(yīng)用的基本組成部分,傳感器是預(yù)測性維護(hù)中必不可少的組件,并且,利用內(nèi)置的智能功能,傳感器可以降低主控制器的負(fù)荷,從而提高整個系統(tǒng)的能效。作為 MEMS 傳感器行業(yè)的領(lǐng)導(dǎo)者,意法半導(dǎo)體提供全系列的傳感器(加速度計(jì)、陀螺儀、磁力計(jì)、振動傳感器、傳聲器、壓力傳感器、濕度傳感器、溫度傳感器、激光傳感器和紅外傳感器等)。在預(yù)測性維護(hù)等應(yīng)用領(lǐng)域,這個范圍廣泛的產(chǎn)品在創(chuàng)新概念和實(shí)際應(yīng)用之間架起了一座重要的橋梁。

          參考文獻(xiàn)

          [1] Industrial Evolution:  https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution#History

          [2] MEMS: https://en.wikipedia.org/wiki/Microelectromechanical_systems

          [3] https://www.st.com/resource/en/datasheet/iis2dlpc.pdf

          [4] 0.061mg/LSB=0.061x9.8milim meter/s2/ bit:

          https://www.st.com/resource/en/datasheet/lsm6dso.pdf

          [5] Sensors with Machine Learning:

          https://www.st.com/content/st_com/en/ecosystems/MEMS-Sensors-Ecosystem-for-Machine-Learning.html

          [6] Finite State Machine in MEMS Sensor:

          https://blog.st.com/lsm6dso-accelerometer-finite-state-machines/

          [7] FP-AI-Monitor1: STM32Cube function pack for ultra-low power STM32 with artificial intelligence (AI) monitoring application based on a wide range of sensors

          https://www.st.com/en/embedded-software/fp-ai-monitor1.html

          [8] STM32: 32-bit Arm Cortex MCUs provided by STMicroelectronics.

          https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

          [9] Capacitive MEMS accelerometer for condition monitoring

          https://www.st.com/content/ccc/resource/technical/document/white_paper/group0/c0/30/46/2f/00/24/42/1c/Capacitive_MEMS_accelerometer_for_condition_monitoring/files/MEMS_Condition_monitoring.pdf/jcr:content/translations/en.MEMS_Condition_monitoring.pdf

          [10] STWIN SensorTile Wireless Industrial Node development kit and reference design for industrial IoT applications

          https://www.st.com/en/evaluation-tools/steval-stwinkt1b.html

          [11] How to use the STEVAL-STWINKT1B SensorTile Wireless Industrial Node for condition monitoring and predictive maintenance applications

          https://www.st.com/resource/en/user_manual/um2777-how-to-use-the-stevalstwinkt1b-sensortile-wireless-industrial-node-for-condition-monitoring-and-predictive-maintenance-applications-stmicroelectronics.pdf

          [12] IIS3DWB Sensor Adaptor Board

          https://www.st.com/en/evaluation-tools/steval-mki208v1k.html

          [13] Edge Processing (Edge Computing)

          https://en.wikipedia.org/wiki/Edge_computing



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();