利用3D NAND克服工業(yè)數(shù)據(jù)存儲(chǔ)問(wèn)題
隨著對(duì)新特性和功能需求的增加,大容量存儲(chǔ)在嵌入式工業(yè)應(yīng)用中的使用持續(xù)增長(zhǎng)。雖然更復(fù)雜的GUI和應(yīng)用已經(jīng)通過(guò)增加NAND芯片容量而成為可能;更快的接口和各種托管NAND解決方案的可用性;尋找能夠應(yīng)對(duì)極端環(huán)境需求的足夠固態(tài)存儲(chǔ)解決方案的挑戰(zhàn)仍然存在。幸運(yùn)的是,NAND存儲(chǔ)介質(zhì)和控制器設(shè)計(jì)的發(fā)展意味著現(xiàn)在有更可靠和更具成本效益的選擇。
本文引用地址:http://www.ex-cimer.com/article/202210/439788.htm隨著對(duì)新特性和功能需求的增加,大容量存儲(chǔ)在嵌入式工業(yè)應(yīng)用中的使用持續(xù)增長(zhǎng)。雖然更復(fù)雜的GUI和應(yīng)用已經(jīng)通過(guò)增加NAND芯片容量而成為可能;更快的接口和各種托管NAND解決方案的可用性;尋找能夠應(yīng)對(duì)極端環(huán)境需求的足夠固態(tài)存儲(chǔ)解決方案的挑戰(zhàn)仍然存在。幸運(yùn)的是,NAND存儲(chǔ)介質(zhì)和控制器設(shè)計(jì)的發(fā)展意味著現(xiàn)在有更可靠和更具成本效益的選擇。
滿足極端環(huán)境的需求
嵌入式設(shè)計(jì)人員對(duì)大容量存儲(chǔ)功能的愿望清單的頂部通常是高可靠性。此外,還需要高機(jī)械抗沖擊和振動(dòng)能力,這通常排除了使用可拆卸存儲(chǔ)器而支持焊接球柵陣列(BGA)器件的可能性。在擴(kuò)展溫度范圍內(nèi)的保證操作也可以添加到列表中。此外,理想的解決方案應(yīng)長(zhǎng)期可用,以防止昂貴且耗時(shí)的存儲(chǔ)設(shè)備重新認(rèn)證。
實(shí)際使用案例 — 找到合適的存儲(chǔ)解決方案
在實(shí)際用例中,SSD中數(shù)據(jù)完整性和電源故障數(shù)據(jù)保護(hù)的好處至關(guān)重要,那就是列車(chē)中的制動(dòng)管理系統(tǒng)。雖然運(yùn)輸系統(tǒng)設(shè)計(jì)人員非常小心地確保穩(wěn)定的電源,但掉電并不是完全可以預(yù)防的。如果沒(méi)有內(nèi)置的固有電源故障保護(hù),則存在明顯的數(shù)據(jù)損壞風(fēng)險(xiǎn)。如果受影響的文件是操作系統(tǒng)或應(yīng)用程序軟件的一部分,這可能意味著制動(dòng)管理系統(tǒng)嚴(yán)重故障。典型的制動(dòng)管理系統(tǒng)監(jiān)控關(guān)鍵參數(shù),如總使用小時(shí)數(shù)、制動(dòng)效率和溫度,以告知關(guān)鍵維護(hù)計(jì)劃。在記錄此數(shù)據(jù)期間發(fā)生故障可能意味著錯(cuò)過(guò)或不必要的停機(jī)時(shí)間以及增加的維護(hù)成本。
為這種類型的嵌入式應(yīng)用選擇合適的 SSD 至關(guān)重要。在許多情況下,單級(jí)單元(SLC)NAND存儲(chǔ)器可能是理想的技術(shù),既提供強(qiáng)大的數(shù)據(jù)保留功能,又提供高編程和擦除(P /E)周期。但是,這種技術(shù)的主要問(wèn)題是缺乏高容量選項(xiàng)和更高的內(nèi)存成本。如果我們看一下低成本的技術(shù),如平面(2D)多級(jí)單元(MLC)NAND,它每個(gè)單元包含兩個(gè)位,我們立即得到更經(jīng)濟(jì),更高容量的選擇。在大多數(shù)情況下,可用的耐久性為3,000至10,000 P / E循環(huán),這對(duì)于許多應(yīng)用來(lái)說(shuō)已經(jīng)足夠了。
完美的解決方案?
嗯,不完全是。
平面 MLC NAND 將其兩位數(shù)據(jù)存儲(chǔ)在一個(gè)存儲(chǔ)單元中。這兩個(gè)位位于兩個(gè)不同的配對(duì)頁(yè)面中,這些頁(yè)面在單獨(dú)的階段中編程。這意味著,如果在寫(xiě)入一個(gè)頁(yè)面時(shí)電源出現(xiàn)故障,則配對(duì)頁(yè)面中的數(shù)據(jù)也可能已損壞。主機(jī)文件系統(tǒng)可能能夠管理電源故障時(shí)正在寫(xiě)入的頁(yè)面,但在稍后某個(gè)時(shí)間嘗試讀取該數(shù)據(jù)之前,它將不知道損壞的配對(duì)頁(yè)面。配對(duì)頁(yè)面的內(nèi)容將包含不可校正 (UNC)數(shù)據(jù),其中每個(gè)單元格的費(fèi)用狀態(tài)不確定,無(wú)法解析為 0 或 1。
防止這種情況的傳統(tǒng)解決方案涉及將驅(qū)動(dòng)器的電源保留足夠的時(shí)間,以允許頁(yè)面程序操作完成。這可以通過(guò)板載功率損耗保護(hù)電容來(lái)實(shí)現(xiàn),以便為頁(yè)面編程時(shí)間以及一些程序延遲提供足夠的電荷。如果使用的驅(qū)動(dòng)器具有 DRAM 緩存,則存儲(chǔ)的能量需要顯著增加,以防止緩存內(nèi)容丟失。典型的斷電保護(hù)(PLP)解決方案可能如圖1中的通用示例所示。
圖1:通用功率保持電路
新型 NAND 技術(shù)
內(nèi)存架構(gòu)的最新進(jìn)展使一類新的基于3D NAND的固態(tài)存儲(chǔ)解決方案成為可能,消除了配對(duì)頁(yè)面問(wèn)題。3D NAND使用垂直堆疊的存儲(chǔ)單元層,可以提供與平面NAND閃存相同的耐用性,同時(shí)提高成本效益和更快的性能。借助美光的工業(yè) 3D MLC NAND,現(xiàn)在可以在一次通過(guò)中實(shí)現(xiàn)編程,同時(shí)對(duì)兩個(gè)頁(yè)面進(jìn)行編程。圖2中的單通道編程表示顯示了MLC NAND中電池的典型閾值電壓(Vt)分布,以及如何將充電狀態(tài)解碼為這些電池的位值。
圖 2:?jiǎn)瓮ǖ谰幊痰谋硎拘问?/p>
上下頁(yè)可由 NAND 閃存控制器在一次操作中進(jìn)行編程,因此電池電荷同時(shí)移動(dòng)到兩個(gè)頁(yè)所需的電平,從而有效地消除了在電源中斷期間配對(duì)頁(yè)中數(shù)據(jù)損壞的可能性??刂破髫?fù)責(zé)確保塊中的頁(yè)面按順序編程,并且下部和上層頁(yè)面地址位于共享字行(WL)上。
美光的3D NAND + 綠聯(lián)的NAN驅(qū)動(dòng)器解決方案
具有智能控制器,如綠聯(lián)開(kāi)發(fā)的用于其小尺寸eMMC NANDrive BGA固態(tài)硬盤(pán)的控制器,以及3D MLC NAND的單通道編程功能。制動(dòng)管理系統(tǒng)設(shè)計(jì)人員現(xiàn)在可以確保存儲(chǔ)的數(shù)據(jù)不受突然斷電的影響。
控制器只需一步即可對(duì)所有狀態(tài)進(jìn)行編程,而不會(huì)干擾相鄰單元,從而降低驅(qū)動(dòng)器上已存在數(shù)據(jù)(稱為“靜態(tài)數(shù)據(jù)”)的風(fēng)險(xiǎn)。此外,該控制器通過(guò)使用美光先進(jìn)的 3D NAND 功能,有助于最大限度地減少傳輸或傳輸中的數(shù)據(jù)(在臨時(shí) DRAM 或 SRAM 緩存緩沖區(qū)中)的損壞。
如果電源在寫(xiě)入操作中途發(fā)生故障,則主機(jī)通??梢允褂萌沼浌δ芑蚱渌聞?wù)故障安全協(xié)議來(lái)確定最后寫(xiě)入的文件未完成,因此應(yīng)忽略或替換該文件中的數(shù)據(jù)。如果應(yīng)用程序使用小寫(xiě)入,則最好是 NAND 頁(yè)的大小。然后,復(fù)雜的控制器固件將使用利用3D NAND自動(dòng)讀取校準(zhǔn)的高級(jí)算法來(lái)嘗試恢復(fù)最后一頁(yè),即使寫(xiě)入操作期間電源出現(xiàn)故障也是如此。
控制器自適應(yīng)閾值電壓調(diào)諧進(jìn)一步增強(qiáng)了控制器恢復(fù)最后一頁(yè)數(shù)據(jù)的能力。為了保留由于過(guò)多的P/E循環(huán)引起的介電泄漏而可能丟失的數(shù)據(jù),控制器還可以定期刷新存儲(chǔ)單元中的數(shù)據(jù)。
通過(guò)實(shí)現(xiàn)上述所有功能,綠聯(lián)的工業(yè)eMMC 5.1固態(tài)硬盤(pán)和美光的3D MLC NAND已成功通過(guò)廣泛的電源故障測(cè)試(數(shù)千次電源中斷周期),而不會(huì)損壞制動(dòng)管理系統(tǒng)中的數(shù)據(jù)。
評(píng)論