<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 智能計算 > 編輯觀點 > 英特爾張宇:軟硬結(jié)合創(chuàng)新助力邊緣智能應用落地

          英特爾張宇:軟硬結(jié)合創(chuàng)新助力邊緣智能應用落地

          作者: 時間:2023-07-19 來源: 收藏
          在最近上海WAIC期間,中國區(qū)網(wǎng)絡與邊緣事業(yè)部首席技術(shù)官、高級首席AI工程師張宇從邊緣人工智能的角度分析了行業(yè)的發(fā)展趨勢、面臨的挑戰(zhàn)以及在其中扮演的角色,以及英特爾在硬件和軟件方面的最新創(chuàng)新。

          人工智能的發(fā)展一次又一次打破了人們對技術(shù)的認知。隨著行業(yè)數(shù)字化轉(zhuǎn)型,人們對于敏捷連接,實施的業(yè)務以及應用的智能等方面的訴求,推動了邊緣人工智能的發(fā)展。相比于火熱的大模型,張宇博士坦言,邊緣人工智能目前絕大部分的應用還處于邊緣推理階段。利用大量數(shù)據(jù)以及極大算力在數(shù)據(jù)中心訓練一個模型,把訓練的結(jié)果推送到前端去執(zhí)行一個推理操作,這是目前絕大部分在邊緣實現(xiàn)人工智能的使用模式。這種模式不可避免會限制模型更新頻率,但是很多智能行業(yè)對模型的更新實際上是有訴求的。

          本文引用地址:http://www.ex-cimer.com/article/202307/448795.htm

          張宇博士認為人工智能發(fā)展的第二個階段應該是邊緣訓練階段,但是邊緣訓練并不是把數(shù)據(jù)中心的訓練方法照搬到邊緣來進行實現(xiàn)。因為在邊緣來實現(xiàn)訓練,有很多特定問題和特定挑戰(zhàn)需要解決。比如在智能制造領(lǐng)域或者是在自動駕駛領(lǐng)域?qū)崿F(xiàn)邊緣訓練,執(zhí)行這些操作的人員往往是產(chǎn)線工人或汽車駕駛?cè)藛T。這些人員往往沒有人工智能經(jīng)驗,同時也沒有精力幫你做人工智能操作。

          邊緣人工智能的發(fā)展,從歷史上來看,它應該發(fā)展成三個階段:第一個階段是邊緣推理,第二個階段是邊緣訓練,第三個階段是邊緣的自主機器學習。邊緣人工智能的發(fā)展實際上面臨著眾多的挑戰(zhàn),除了前面提到的有關(guān)邊緣訓練的挑戰(zhàn)以外,還有邊緣設備面臨的挑戰(zhàn)。由于提供的算力所能夠承載的功耗往往是有限的,所以如何在有限資源的情況下去實現(xiàn)邊緣的推理及訓練,這對芯片的性能、功耗比提出了更高的要求。另外,邊緣設備的碎片化非常明顯,如何利用軟件很好地實現(xiàn)在不同平臺之間的遷移,實際上也提出了更多要求。

          張宇直言,如果我們要邊緣實現(xiàn)邊緣訓練,就需要有更加自動化的手段和工具去完成從數(shù)據(jù)標注到模型的訓練,以及模型部署一整套完整的開發(fā)流程。他認為邊緣人工智能下一步的發(fā)展方向應該是自主學習階段,也就是邊緣的auto machine learning。作為自主學習,人工智能應該能夠感知人的意圖。根據(jù)人的意圖,它能夠設計一個合理的網(wǎng)絡模型結(jié)構(gòu),或選取一個合理的人工智能網(wǎng)絡模型,然后自主選擇相應訓練數(shù)據(jù)集進行訓練,再把訓練結(jié)果自主推送到前端去執(zhí)行相應推理操作,完成一整套自主化的過程。

          人工智能的發(fā)展離不開算力,離不開數(shù)據(jù),其實數(shù)據(jù)的背后又離不開通信技術(shù)以及存儲技術(shù)。應該說推動本輪人工智能發(fā)展最核心的要素,實際上是計算、通訊和存儲技術(shù)的不斷提升。張宇博士介紹,英特爾作為一家數(shù)據(jù)公司,產(chǎn)品恰恰涵蓋了計算、通訊和存儲的各個方面。在計算方面,英特爾提供的是包括CPU、GPU、FPGA和各種人工智能加速芯片在內(nèi)的多種產(chǎn)品,來滿足用戶對于算力的不同要求。在硬件方面,考慮到邊緣人工智能對于算力、功耗、安全的不同要求,英特爾所采取的思路是同時推動通用處理器和通用GPU并舉的方案。在前端方面,我們會根據(jù)不同場景的要求選擇不同的產(chǎn)品組合,包括獨立顯卡、集成顯卡、CPU以及Habana。

          英特爾有不同的計算資源可供用戶使用,但這需要考慮資源分配和調(diào)度問題。對于資源調(diào)度,需要一個統(tǒng)一的API接口,否則不同的資源調(diào)度都需要不同的接口,這是不經(jīng)濟的。因此,英特爾正在考慮如何在異構(gòu)平臺上合理分配負載,以進行人工智能處理。在底層方面,英特爾采用了OneAPI的思路,它基于DPC++編程模式,利用OneAPI提供的優(yōu)化庫,在英特爾硬件平臺上高效調(diào)用底層資源。這是英特爾在底層方面的戰(zhàn)略,并且是我們目前一直在進行的工作。

          在上層調(diào)度方面,我們首先需要考慮資源分配的問題。對于大模型的訓練,不同的應用有不同的算法模型和算力要求,因此我們不能使用至強處理器來進行訓練。目前,我們主要推薦使用專門為大模型訓練設計的Habana Gaudi 2。在最近的MLCommons公開的AI評測中,只有英特爾和另一家友商展示了在大模型訓練方面的良好性能,其中英特爾是其中之一。我們計劃不久將其引入中國,并發(fā)布相關(guān)活動,這對英特爾來說非常重要。

          在軟件推理方面,英特爾提供的OpenVINO深度學習的部署工具套件,可以將開發(fā)人員在開放的人工智能框架上所設計和訓練好的網(wǎng)絡模型交給OpenVINO,它可以幫助開發(fā)人員完成從建模到優(yōu)化到部署的開發(fā)過程。在建模方面,OpenVINO提供三百多個預訓練好的網(wǎng)絡模型。開發(fā)人員可以在模型基礎(chǔ)之上直接進行應用的開發(fā),或者在這些模型之上進行二次訓練,加速模型的構(gòu)建速度。在優(yōu)化方面,OpenVINO使用的是網(wǎng)絡壓縮的技術(shù),能夠?qū)⒛P驮诒WC精度的情況下進行簡化。其實網(wǎng)絡壓縮是一個很大的概念,里面包含了若干技術(shù)。除了量化的技術(shù)以外,還包括低比特等一系列的技術(shù)。在訓練完成后,將訓練結(jié)果傳遞給OpenVINO進行硬件平臺的適配。在OpenVINO的新版本中,它提供了Auto插件,用戶只需告訴OpenVINO自己關(guān)注的性能指標,如延遲或吞吐量,OpenVINO就能夠自動探測硬件類型并進行硬件配置,將工作負載下發(fā)到相應的硬件上執(zhí)行人工智能操作。因此,我們希望通過OpenVINO來處理調(diào)度問題。

          在調(diào)度之前,我們需要進行模型壓縮。壓縮不是普通的壓縮,而是根據(jù)使用場景、行業(yè)和關(guān)注特征等進行有針對性的優(yōu)化,以便于使用OpenVINO進行部署和分配硬件負載。因此,在底層方面,我們采用OneAPI來進行統(tǒng)一,而在推理方面,我們將利用OpenVINO來進行負載的分配。對于大模型的訓練,我們將使用Habana Gaudi 2來完成。



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();