<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 經(jīng)典電源電子電路設(shè)計(jì)

          經(jīng)典電源電子電路設(shè)計(jì)

          作者: 時(shí)間:2024-05-23 來源:網(wǎng)絡(luò) 收藏

          電源電子中存在一些不穩(wěn)定因素,而設(shè)計(jì)用來防止此類不穩(wěn)定因素影響電路效果的回路稱作保護(hù)電路。比如有過流保護(hù)、過壓保護(hù)、過熱保護(hù)、空載保護(hù)、短路保護(hù)等。鋰電池保護(hù)電路由兩個(gè)場(chǎng)效應(yīng)管和專用保護(hù)集成塊S8232組成,過充電控制管FET2和過放電控制管FET1串聯(lián)于電路,由保護(hù)IC監(jiān)視電池電壓并進(jìn)行控制,當(dāng)電池電壓上升至4.2V時(shí),過充電保護(hù)管FET2截止,停止充電。

          本文引用地址:http://www.ex-cimer.com/article/202405/459079.htm

          電容在中低頻或直流情況下,就是一個(gè)儲(chǔ)能組件,只表現(xiàn)為一個(gè)電容的特性,但在高頻情況下,它就不僅僅是個(gè)電容了,它有一個(gè)理想電容的特性,有漏電流(在高頻等效電路上表現(xiàn)為R),有引線電感,還 在導(dǎo)致電壓脈沖波動(dòng)情況下發(fā)熱的ESR(等效串聯(lián)電阻)。從這個(gè)圖上分析,能幫我們?cè)O(shè)計(jì)師得出很多有益的設(shè)計(jì)思路。第一,按照常規(guī)思路,1/2πfc是電容的容抗,應(yīng)該是頻率越高,容抗越小,濾波效果越好,即越高頻的雜波越容易被泄放掉,但事實(shí)并非如此,因?yàn)橐€電感的存在,一支電容僅僅在其 1/2πfc=2πf L等式成立的時(shí)候,才是整體阻抗最小的時(shí)候,濾波效果才最好,頻率高了低了都會(huì)濾波效果下降,由此就可以分析出結(jié)論,為什么在IC的VCC端都會(huì)加兩支電容,一支電解的,一支瓷片的,并且容值一般相差100倍以上多一點(diǎn)。就是兩支不同的電容的諧振頻率點(diǎn)岔開了一段距離,既利于對(duì)稍高頻的濾波,也利于對(duì)較低 頻的濾波。

          防反接保護(hù)電路

          通常情況下直流電源輸入防反接保護(hù)電路是利用二極管的單向?qū)щ娦詠韺?shí)現(xiàn)防反接保護(hù)。如下圖1示:這種接法簡(jiǎn)單可靠,但當(dāng)輸入大電流的情況下功耗影響是非 常大的。以輸入電流額定值達(dá)到2A,如選用Onsemi的快速恢復(fù)二極管 MUR3020PT,額定管壓降為0.7V,那么功耗至少也要達(dá)到:Pd=2A×0.7V=1.4W,這樣效率低,發(fā)熱量大,要加散熱器。另外還可以用二 極管橋?qū)斎胱稣?,這樣電路就永遠(yuǎn)有正確的極性(圖2)。這些方案的缺點(diǎn)是,二極管上的壓降會(huì)消耗能量。輸入電流為2A時(shí),圖1中的電路功耗為 1.4W,圖2中電路的功耗為2.8W。

          圖1 一只串聯(lián)二極管保護(hù)系統(tǒng)不受反向極性影響,二極管有0.7V的壓降

          圖2 是一個(gè)橋式整流器,不論什么極性都可以正常工作

          但是有兩個(gè)二極管導(dǎo)通,功耗是圖1的兩倍

          利用MOS管的開關(guān)特性,控制電路的導(dǎo)通和斷開來設(shè)計(jì)防反接保護(hù)電路,由于功率MOS管的內(nèi)阻很小,解決了現(xiàn)有采用二極管電源防反接方案存在的壓降和功耗過大的問題。

          MOS管型防反接保護(hù)電路

          圖3利用了MOS管的開關(guān)特性,控制電路的導(dǎo)通和斷開來設(shè)計(jì)防反接保護(hù)電路,由于功率MOS管的內(nèi)阻很小,現(xiàn)在 MOSFET Rds(on)已經(jīng)能夠做到毫歐級(jí),解決了現(xiàn)有采用二極管電源防反接方案存在的壓降和功耗過大的問題。極性反接保護(hù)將保護(hù)用場(chǎng)效應(yīng)管與被保護(hù)電路串聯(lián)連 接。保護(hù)用場(chǎng)效應(yīng)管為PMOS場(chǎng)效應(yīng)管或NMOS場(chǎng)效應(yīng)管。若為PMOS,其柵極和源極分別連接被保護(hù)電路的接地端和電源端,其漏極連接被保護(hù)電路中 PMOS元件的襯底。若是NMOS,其柵極和源極分別連接被保護(hù)電路的電源端和接地端,其漏極連接被保護(hù)電路中NMOS元件的襯底。一旦被保護(hù)電路的電源 極性反接,保護(hù)用場(chǎng)效應(yīng)管會(huì)形成斷路,防止電流燒毀電路中的場(chǎng)效應(yīng)管元件,保護(hù)整體電路。具體N溝道MOS管防反接保護(hù)電路電路如圖3示。

          圖3. NMOS管型防反接保護(hù)電路

          N溝道MOS管通過S管腳和D管腳串接于電源和負(fù)載之間,電阻R1為MOS管提供電壓偏置,利用MOS管的開關(guān)特性控制電路的導(dǎo)通和斷開,從而防止電源 反接給負(fù)載帶來損壞。正接時(shí)候,R1提供VGS電壓,MOS飽和導(dǎo)通。反接的時(shí)候MOS不能導(dǎo)通,所以起到防反接作用。功率MOS管的 Rds(on)只有20mΩ實(shí)際損耗很小,2A的電流,功耗為(2×2)×0.02=0.08W根本不用外加散熱片。解決了現(xiàn)有采用二極管電源防反接方案 存在的壓降和功耗過大的問題。

          上圖中VZ1為穩(wěn)壓管防止柵源電壓過高擊穿mos管,NMOS管的導(dǎo)通電阻比PMOS的小,NMOS管接在電源的負(fù)極,柵極高電平導(dǎo) 通,PMOS管接在電源的正極,柵極低電平導(dǎo)通。電源中保護(hù)過程,利用場(chǎng)效應(yīng)管的導(dǎo)通電阻作為檢測(cè)電阻,監(jiān)視它的電壓降,當(dāng)電壓降 超過設(shè)定值時(shí)就停止放電。在一般的情況下,電路中一般還加有延時(shí)電路,以區(qū)分浪涌電流和短路電流,總得來說電路功能還是比較完善的。



          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();