6個(gè)技術(shù)點(diǎn),帶您理解用于電池儲(chǔ)能系統(tǒng)的 DC-DC 功率轉(zhuǎn)換拓?fù)浣Y(jié)構(gòu)
近年來(lái), 太陽(yáng)能等可再生能源的應(yīng)用顯著增長(zhǎng)。推動(dòng)這一發(fā)展的因素包括政府的激勵(lì)措施、技術(shù)進(jìn)步以及系統(tǒng)成本降低。雖然光伏(PV)系統(tǒng)比以往任何時(shí)候都更加合理, 但仍然存在一個(gè)主要障礙, 即我們最需要能源時(shí),太陽(yáng)能并不產(chǎn)生能源。清晨,當(dāng)人們和企業(yè)開(kāi)始一天的工作時(shí),對(duì)電網(wǎng)的需求會(huì)上升;晚上,當(dāng)人們回到家中時(shí),對(duì)電網(wǎng)的需求也會(huì)上升。然而,太陽(yáng)能發(fā)電是在太陽(yáng)升起后逐漸攀升的,但在需求量大的時(shí)段,如傍晚太陽(yáng)落山后,還是無(wú)法提供能源。因此,太陽(yáng)能等可再生能源越來(lái)越多地與儲(chǔ)能系統(tǒng)集成, 以?xún)?chǔ)存能源供后續(xù)使用。
本文引用地址:http://www.ex-cimer.com/article/202406/459809.htm與太陽(yáng)能光伏發(fā)電配套的儲(chǔ)能系統(tǒng)通常采用電池儲(chǔ)能系統(tǒng)(BESS)。關(guān)于BESS的進(jìn)步,如更優(yōu)質(zhì)、更廉價(jià)的電池已顯而易見(jiàn),但較少提及的是更高效功率轉(zhuǎn)換方法的應(yīng)用。在深入探討現(xiàn)代功率轉(zhuǎn)換拓?fù)浣Y(jié)構(gòu)之前,應(yīng)該先討論一些重要的設(shè)計(jì)考慮因素。
隔離型與非隔離型
隔離型功率轉(zhuǎn)換拓?fù)湓贒C-DC階段通過(guò)使用變壓器來(lái)實(shí)現(xiàn)初級(jí)側(cè)與次級(jí)側(cè)的電磁隔離。因此,初級(jí)側(cè)與次級(jí)側(cè)各自擁有獨(dú)立的地線,而非共用接地。由于增加了變壓器,隔離型拓?fù)涑杀靖摺Ⅲw積更大且效率略低,在并網(wǎng)應(yīng)用中,出于安全考慮, 電流隔離至關(guān)重要。
雙向功率轉(zhuǎn)換
雙向拓?fù)浣Y(jié)構(gòu)減少了連接低壓 BESS 至相應(yīng)高壓直流母線所需的功率轉(zhuǎn)換模塊數(shù)量。安森美(onsemi)的 25 kW快速直流電動(dòng)汽車(chē)充電樁參考設(shè)計(jì)就是利用兩個(gè)雙向功率轉(zhuǎn)換模塊的一個(gè)例子。該雙向轉(zhuǎn)換器與電網(wǎng)連接,為電動(dòng)汽車(chē)的直流電池充電。AC-DC轉(zhuǎn)換階段采用三相 6組(6-pack) 升壓有源前端,而DC-DC階段采用雙有源橋 (DAB) 拓?fù)?。DC-DC雙有源橋是較為流行的拓?fù)浣Y(jié)構(gòu)之一,稍后將對(duì)其進(jìn)行討論。
硬開(kāi)關(guān)與軟開(kāi)關(guān)
傳統(tǒng)的功率轉(zhuǎn)換器采用硬開(kāi)關(guān)控制方案。硬開(kāi)關(guān)的問(wèn)題在于,當(dāng)晶體管從導(dǎo)通狀態(tài)切換到關(guān)斷狀態(tài)時(shí)(反之亦然) ,漏極至源極電壓(VDS)會(huì)降低,而漏極電流(ID)會(huì)增加。兩者存在重疊, 這種重疊會(huì)產(chǎn)生功率損耗,稱(chēng)為導(dǎo)通損耗和關(guān)斷開(kāi)關(guān)損耗。軟開(kāi)關(guān)是一種用于限制開(kāi)關(guān)損耗的控制方案,其方法是延遲 ID 斜坡到 VDS 接近于零時(shí)導(dǎo)通;延遲 VDS 斜坡到 ID 接近于零時(shí)關(guān)斷。這種延遲被稱(chēng)為死區(qū)時(shí)間,電流/電壓斜坡分別被稱(chēng)為零電壓(ZVS) 和零電流開(kāi)關(guān)(ZCS) 。軟開(kāi)關(guān)可通過(guò)諧振開(kāi)關(guān)拓?fù)洌ㄈ?LLC 和 CLLC 轉(zhuǎn)換器)實(shí)現(xiàn),以大幅降低開(kāi)關(guān)損耗。
兩電平與三電平拓?fù)洌▎蜗嗯c雙相)
三電平轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)比兩電平拓?fù)浣Y(jié)構(gòu)更具優(yōu)勢(shì),原因有以下幾點(diǎn)。首先,三電平拓?fù)浣Y(jié)構(gòu)的開(kāi)關(guān)損耗低于兩電平拓?fù)浣Y(jié)構(gòu)。開(kāi)關(guān)損耗與施加在開(kāi)關(guān)上的電壓平方(V2)成正比,在三電平拓?fù)浣Y(jié)構(gòu)中, 只有一半的總輸出電壓被(部分)開(kāi)關(guān)所承受。其他優(yōu)勢(shì)來(lái)自于更低的電流紋波和 EMI。同樣,只有一半的總輸出電壓被施加到升壓電感器上,從而降低了電流紋波,使其更易于濾波。EMI 與電流紋波直接相關(guān),降低電流紋波也就降低了 EMI。由于峰值-峰值開(kāi)關(guān)電壓降低, dV/dt 和 dI/dt 也隨之降低,從而進(jìn)一步減少了 EMI。
寬禁帶技術(shù)
如碳化硅(SiC) 等寬禁帶技術(shù)進(jìn)一步提高了功率轉(zhuǎn)換系統(tǒng)的效率。由于這些器件的固有特性,它們相比傳統(tǒng)的硅基MOSFET具有許多優(yōu)勢(shì)。其中一些重要因素包括:
由于擊穿電場(chǎng)和禁帶能量更高, 器件的擊穿電壓更高;
熱傳導(dǎo)率更高,從而降低了冷卻要求;
導(dǎo)通電阻更低,從而改善了導(dǎo)通損耗;
電子飽和速度更高,從而實(shí)現(xiàn)了更快的開(kāi)關(guān)速度。
DC-DC拓?fù)?/p>
1.同步降壓、同步升壓以及反激式轉(zhuǎn)換器
同步轉(zhuǎn)換器源自經(jīng)典的降壓和升壓轉(zhuǎn)換器。之所以稱(chēng)為同步轉(zhuǎn)換器,是因?yàn)樗靡粋€(gè)額外的有源開(kāi)關(guān)取代了二極管。反激式轉(zhuǎn)換器與同步轉(zhuǎn)換器類(lèi)似, 不同之處在于通過(guò)用耦合電感器(也稱(chēng)為 1:1 變壓器)取代電感器,增加了隔離功能。
增加這種變壓器可以起到隔離的作用,但可能需要一個(gè)電壓箝位緩沖電路來(lái)抑制變壓器的漏電流。由于結(jié)構(gòu)和調(diào)制方案簡(jiǎn)單,這些轉(zhuǎn)換器的成本較低,但與一些更先進(jìn)的拓?fù)浣Y(jié)構(gòu)相比,損耗和電磁干擾(EMI)往往較高。
2.對(duì)稱(chēng)升壓-降壓
對(duì)稱(chēng)降壓-升壓轉(zhuǎn)換器是一種應(yīng)用于高功率系統(tǒng)中的三電平拓?fù)浣Y(jié)構(gòu)實(shí)例。如前所述,對(duì)于標(biāo)準(zhǔn)的兩電平轉(zhuǎn)換器,開(kāi)關(guān)上的電壓應(yīng)力來(lái)自于總母線電壓,而對(duì)于更高功率的系統(tǒng),這一數(shù)值可能達(dá)到1000V或更高。這就需要在高功率系統(tǒng)中使用額定電壓為1200V及以上的晶體管。
與此相反,像對(duì)稱(chēng)降壓-升壓轉(zhuǎn)換器這樣的三電平拓?fù)鋬H需使用額定電壓為母線電壓一半的器件,且還具有降低開(kāi)關(guān)損耗、減小電磁干擾(EMI)以及更小的磁性元件體積等額外優(yōu)勢(shì)。其缺點(diǎn)主要源于對(duì)更多開(kāi)關(guān)和更復(fù)雜控制算法的要求。
3.飛跨電容轉(zhuǎn)換器(FCC)
飛跨電容轉(zhuǎn)換器(FCC)是一種三電平轉(zhuǎn)換器,這種配置能夠?qū)崿F(xiàn)雙向功率流。它由四個(gè)開(kāi)關(guān)、一個(gè)電感器和一個(gè)跨接在中間兩個(gè)開(kāi)關(guān)的飛跨電容組成。由于這是一種三電平拓?fù)浣Y(jié)構(gòu),飛跨電容充當(dāng)了箝位電容(或恒壓源)的角色, 該結(jié)構(gòu)還具有開(kāi)關(guān)電壓應(yīng)力減半的優(yōu)點(diǎn)。
因此,這種拓?fù)浣Y(jié)構(gòu)的優(yōu)點(diǎn)包括使用較低電壓、 具有更高性能開(kāi)關(guān)、無(wú)源元件尺寸較小以及減少了電磁干擾。這種電路拓?fù)浣Y(jié)構(gòu)的缺點(diǎn)是必須配備啟動(dòng)電路,將飛跨電容的電壓調(diào)節(jié)到母線電壓的一半, 從而充分利用低電壓開(kāi)關(guān)的優(yōu)勢(shì)。
4.雙有源橋(DAB)
雙有源橋(DAB)是最常見(jiàn)的隔離型雙向拓?fù)渲?。如圖7所示,其在初級(jí)側(cè)和次級(jí)側(cè)均采用了全橋配置。每個(gè)橋通過(guò)移相控制,即控制相對(duì)于彼此相位偏移的方波,來(lái)控制功率流方向。
此拓?fù)涞囊恍﹥?yōu)點(diǎn)包括:每個(gè)開(kāi)關(guān)上的電壓應(yīng)力限于母線電壓、 兩側(cè)所有開(kāi)關(guān)上的電流應(yīng)力大致相等,以及無(wú)需額外元件(如諧振電路)即可實(shí)現(xiàn)軟開(kāi)關(guān)。一些缺點(diǎn)則是由于高電流紋波,濾波電路至關(guān)重要,且在輕載條件下轉(zhuǎn)換器的軟開(kāi)關(guān)能力可能會(huì)失效。
5.LLC諧振轉(zhuǎn)換器
LLC 轉(zhuǎn)換器是一種可利用軟開(kāi)關(guān)技術(shù)的諧振拓?fù)浣Y(jié)構(gòu)。下圖顯示了這種拓?fù)浣Y(jié)構(gòu)在初級(jí)側(cè)可以采用半橋或全橋配置。LLC 轉(zhuǎn)換器通常以單向模式運(yùn)行,但也可以通過(guò)將現(xiàn)有的二極管換成有源開(kāi)關(guān)來(lái)實(shí)現(xiàn)雙向運(yùn)行。該電路的諧振回路包括一個(gè)諧振電感器、一個(gè)諧振電容器和一個(gè)磁化電感器。與之前的 DAB 拓?fù)湎啾?,該電路的一個(gè)優(yōu)點(diǎn)是在整個(gè)負(fù)載范圍內(nèi)保持軟開(kāi)關(guān)特性。
6.CLLC諧振轉(zhuǎn)換器
CLLC 轉(zhuǎn)換器是另一種可利用軟開(kāi)關(guān)技術(shù)和雙向功率流的諧振拓?fù)浣Y(jié)構(gòu)。它在初級(jí)側(cè)和次級(jí)側(cè)均包含一個(gè)諧振電感器和一個(gè)諧振電容器。該電路和其他在初級(jí)側(cè)和次級(jí)側(cè)都包含全橋的電路的一個(gè)共同優(yōu)點(diǎn)在于,其控制原理是相同的。此外,與之前的 LLC 轉(zhuǎn)換器一樣, CLLC 可在整個(gè)負(fù)載范圍內(nèi)實(shí)現(xiàn)軟開(kāi)關(guān)特性。不過(guò), CLLC 優(yōu)于 LLC 拓?fù)涞囊粋€(gè)原因是對(duì)稱(chēng)諧振回路。LLC 拓?fù)渚哂蟹菍?duì)稱(chēng)諧振回路,導(dǎo)致反向操作與正向操作不同。具有對(duì)稱(chēng)諧振回路的 CLLC解決了這一問(wèn)題,因此更容易實(shí)現(xiàn)雙向充電。
電池儲(chǔ)能系統(tǒng)持續(xù)演進(jìn),并伴隨可再生能源發(fā)電技術(shù)得到更廣泛的應(yīng)用,這催生了對(duì)更高效、更可靠功率轉(zhuǎn)換系統(tǒng)的需求。本文探討了現(xiàn)代功率轉(zhuǎn)換系統(tǒng)的重要特征以及實(shí)現(xiàn)這些特征的一些常見(jiàn)DC-DC電路拓?fù)洹?/p>
文中所討論的許多電路拓?fù)渚衫?a class="contentlabel" href="http://www.ex-cimer.com/news/listbylabel/label/安森美">安森美免費(fèi)在線的基于PLECS的Elite Power仿真工具進(jìn)行仿真, 以更深入地了解器件級(jí)和系統(tǒng)級(jí)效率。
文章來(lái)源:安森美
評(píng)論