<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 模擬技術 > 設計應用 > 終于搞明白差模噪聲與共模噪聲

          終于搞明白差模噪聲與共模噪聲

          作者: 時間:2024-11-21 來源:ADI 收藏

          開關穩(wěn)壓器的EMI分為電磁輻射和傳導輻射(CE)。本文重點討論傳導輻射,其可進一步分為兩類:共模(CM)噪聲和差模(DM)噪聲。為什么要區(qū)分CM-DM?對CM噪聲有效的EMI抑制技術不一定對DM噪聲有效,反之亦然,因此,確定傳導輻射的來源可以節(jié)省花在抑制噪聲上的時間和成本。

          本文引用地址:http://www.ex-cimer.com/article/202411/464788.htm

          本文介紹一種將CM輻射和DM輻射從LTC7818控制的開關穩(wěn)壓器中分離出來的實用方法。知道CM噪聲和DM噪聲在CE頻譜中出現(xiàn)的位置,電源設計人員便可有效應用EMI抑制技術,這從長遠來看可以節(jié)省設計時間和BOM成本。

          圖1.降壓轉換器中的CM噪聲路徑和DM噪聲路徑

          圖1顯示了典型降壓轉換器的CM噪聲和DM噪聲路徑。DM噪聲在電源線和返回線之間產生,而CM噪聲是通過雜散電容CSTRAY在電源線和接地層(例如銅測試臺)之間產生。用于CE測量的LISN位于電源和降壓轉換器之間。LISN本身不能用于直接測量CM和DM噪聲,但它確實能測量電源和返回電源線噪聲——分別為圖1中的V1和V2。這些電壓是在50Ω電阻上測得的。根據(jù)CM和DM噪聲的定義,如圖1所示,V1和V2可以分別表示為CM電壓(V CM )和DM電壓(V DM )的和與差。因此,V1和V2的平均值就是V CM ,而V1和V2之差的一半就是V DM 。

          1

          測量CM噪聲和DM噪聲

          T型功率合成器是一種無源器件,可將兩個輸入信號合成為一個端口輸出。0°合成器在輸出端口產生輸入信號的矢量和,而180°合成器產生輸入信號的矢量差。因此,0°合成器可用于產生V CM ,180°合成器產生 V DM 。

          圖2所示的兩個合成器ZFSC-2-1W+ (0°)和ZFSCJ-2-1+ (180°)來自Mini-Circuits,用于測量1 MHz至108 MHz的V CM 和V DM 。對于這些器件,頻率低于1 MHz時測量誤差會增大。對于較低頻率的測量,應使用其他合成器,例如ZMSC-2-1+ (0°)和ZMSCJ-2-2 (180°)。

          圖2.0°和180°合成器

          圖3.用于測量(a) V CM 和(b) V DM 的實驗裝置

          圖4.用于測量CM噪聲和DM噪聲的測試設置

          測試設置如圖3所示。功率合成器已添加到標準CE測試設置中。LISN針對電源線和返回線的輸出分別連接到合成器的輸入端口1和輸入端口2。0°合成器的輸出電壓為V S_CM = V1 + V2;180°合成器的輸出電壓為V S_DM = V1 – V2。

          合成器的輸出信號V S_CM 和V S_DM 必須在測試接收器中處理,以產生V CM 和V DM 。首先,功率合成器已指定接收器中補償?shù)牟迦霌p耗。其次,由于V CM = 0.5 V S_CM 且V DM = 0.5 V S_DM ,因此測試接收器從接收到的信號中再減去6 dBμV。補償這兩個因素之后,在測試接收器中讀出測得的CM噪聲和DM噪聲。

          2

          CM噪聲和DM噪聲測量的實驗驗證

          使用一個裝有雙降壓轉換器的標準演示板來驗證此方法。演示板的開關頻率為2.2 MHz,V IN = 12 V,V OUT1 = 3.3 V,I OUT1 = 10 A,V OUT2 = 5 V,I OUT2 = 10 A。圖4顯示了EMI室中的測試設置。

          圖5和圖6顯示了測試結果。在圖5中,較高EMI曲線表示使用標準CISPR 25設置測得的總電壓法CE,而較低輻射曲線表示添加0°合成器后測得的分離CM噪聲。在圖6中,較高輻射曲線表示總CE,而較低EMI曲線表示添加180°合成器后測得的分離DM噪聲。這些測試結果符合理論分析,表明DM噪聲在較低頻率范圍內占主導地位,而CM噪聲在較高頻率范圍內占主導地位。

          圖5.測得的CM噪聲與總噪聲的關系

          圖6.測得的DM噪聲與總噪聲的關系

          根據(jù)測量結果,在30 MHz至108 MHz范圍,總輻射噪聲超過了CISPR 25 Class 5的限值。通過分離CM和DM噪聲測量,發(fā)現(xiàn)此范圍內的高傳導輻射似乎是由CM噪聲引起的。添加或增強DM EMI濾波器或以其他方式降低輸入紋波幾乎沒有意義,因為這些抑制技術不會降低該范圍內引發(fā)問題的CM噪聲。

          因此,該演示板展示了專門解決CM噪聲的辦法。CM噪聲的來源之一是開關電路中的高dV/dt信號。通過增加柵極電阻來降低dV/dt,可以降低該噪聲電平。如前所述,CM噪聲通過雜散電容C STRAY 穿過LISN。C STRAY 越小,在LISN中檢測到的CM噪聲就越低。為了減小C STRAY ,應減少此演示板上開關節(jié)點的覆銅面積。此外,轉換器輸入端添加了一個CM EMI濾波器,以獲得高CM阻抗,從而降低進入LISN的CM噪聲。通過實施這些辦法,30 MHz至108 MHz范圍的噪聲得以充分降低,從而符合CISPR 25 Class 5標準,如圖7所示。

          圖7.總噪聲得到改善

          3

          結論

          本文介紹了一種用于測量和分離總傳導輻射中的CM噪聲和DM噪聲的實用方法,并通過測試結果進行了驗證。 如果設計人員能夠分離CM和DM噪聲,便可實施專門針對CM或DM的減輕解決方案來有效抑制噪聲。 總之,這種方法有助于快速找到EMI故障的根本原因,節(jié)省EMI設計的時間。



          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();