硅光子技術(shù)全面普及:體驗(yàn)硅發(fā)光技術(shù)的進(jìn)展(三)
通過“慢光”縮小調(diào)制器尺寸
要想進(jìn)一步改善PECST的成果,進(jìn)一步縮小光調(diào)制器的尺寸并實(shí)現(xiàn)高速動(dòng)作至關(guān)重要。這方面的研究也取得了進(jìn)展(圖7)。例如,PECST的研究人員之一——橫濱國立大學(xué)工學(xué)研究院教授馬場(chǎng)俊彥的研發(fā)小組通過CMOS兼容技術(shù)開發(fā)出了利用光子晶體(PhC)*技術(shù)實(shí)現(xiàn)10Gbit/秒動(dòng)作的Mach- Zehnder型光調(diào)制器。由此,將光調(diào)制器的長(zhǎng)度大幅縮短到了90μm。
圖7:光調(diào)制器取得進(jìn)一步的進(jìn)步
本圖為日本的研究機(jī)構(gòu)開發(fā)的新一代光調(diào)制器的概要。橫濱國立大學(xué)的馬場(chǎng)研究室利用光子晶體(PhC)將光速降至約1/10,由此在較短的元件長(zhǎng)度下確保了較長(zhǎng)的光的有效路徑長(zhǎng)度(a)。東京大學(xué)和田研究室通過組合使用鍺調(diào)制器和MEMS,利用板簧的應(yīng)力成功控制了鍺的可調(diào)制波長(zhǎng)(b)。(圖(a)由 PECST制作,(b)由東京大學(xué)和田研究室拍攝)
*光子晶體(Photonic Crystal,PhC)=以人工方式在電磁波透過的材料中制作了大量尺寸與透過的電磁波波長(zhǎng)基本相同的開孔的材料。用于光密封、路徑控制、群速度控制等。半導(dǎo)體的原子排列規(guī)則,因此自由電子等載流子會(huì)產(chǎn)生價(jià)帶、禁帶(帶隙)和導(dǎo)帶。PhC用人工孔代替原子實(shí)現(xiàn)了與半導(dǎo)體相同的效果。最近,可實(shí)現(xiàn)半導(dǎo)體晶格振動(dòng)(聲子)效果的“聲子晶體(Phononic Crystal)”也已問世。
PhC的特點(diǎn)是,光密封效果非常高,而且可大幅減慢光速(群速度)。慢光意味著PhC波導(dǎo)的有效折射率大,以短波導(dǎo)也能確保較長(zhǎng)的有效路徑長(zhǎng)度,因此能實(shí)現(xiàn)調(diào)制器的小型化。
在PhC的開發(fā)中,有將光速減慢到約1/1000萬的例子。不過,光速過慢的話,會(huì)出現(xiàn)帶寬非常窄的課題。在馬場(chǎng)教授的開發(fā)中,通過將光速減至約1/10,可在波長(zhǎng)為1550nm附近的17nm帶寬下使用,而且“對(duì)溫度的依賴性也比較小,在100℃以上的溫度變化下也能運(yùn)行”。
據(jù)馬場(chǎng)教授介紹,這種復(fù)雜構(gòu)造的元件乍一看好像很難制造,但“可以通過180nm工藝CMOS技術(shù)中使用的248nm KrF步進(jìn)器制造”。
導(dǎo)入MEMS技術(shù)
有望縮小調(diào)制器尺寸的另一項(xiàng)技術(shù)是MEMS技術(shù)。東京大學(xué)研究生院工學(xué)系研究科教授和田一實(shí)的研發(fā)小組在采用鍺(Ge)的電場(chǎng)吸收(EA)型調(diào)制器中采用了MEMS技術(shù)。由此,將調(diào)制器長(zhǎng)度縮小至約30μm。其特點(diǎn)是可以使用無摻雜的鍺,而且利用MEMS技術(shù)還能使用于調(diào)制的波長(zhǎng)范圍可變。
采用鍺的EA型調(diào)制器和受光器一般通過對(duì)鍺進(jìn)行摻雜或施加應(yīng)變來改變調(diào)制和受光波長(zhǎng),但無法實(shí)現(xiàn)波長(zhǎng)的可變控制,而且摻雜后,存在與其他元件在制造工藝上兼容性降低的課題。
原本不發(fā)光的材料發(fā)光了
硅光子剩下的最大課題就是發(fā)光元件。此前開發(fā)的光收發(fā)器的發(fā)光元件都無法與硅和CMOS兼容,因此要粘貼采用化合物半導(dǎo)體的發(fā)光元件。實(shí)現(xiàn)與CMOS兼容的發(fā)光元件可以說是硅光子技術(shù)的“夙愿”。
現(xiàn)在,這個(gè)課題也在不斷取得突破。此前,由于硅和鍺屬于能帶結(jié)構(gòu)為間接遷移型*的半導(dǎo)體,因此一直被認(rèn)為基本不發(fā)光。但在最近一兩年,這個(gè)“常識(shí)”被打破,已經(jīng)能夠看到利用鍺和硅實(shí)現(xiàn)發(fā)光元件的希望(圖8)。
評(píng)論