利用數(shù)字隔離器優(yōu)化隔離系統(tǒng)設(shè)計
由于磁性數(shù)字隔離器大部分功率消耗于從一個狀態(tài)切換至另一狀態(tài)時,故功耗與工作頻率呈比例關(guān)系。因此,處于空閑狀態(tài)或者開關(guān)速度極低的通道功耗非常小。一旦已確定應(yīng)用的最大串行時鐘速率,即可設(shè)計電源來提供支持該速率的充足電流。在利用光耦合器進行設(shè)計時,必須確保LED處于關(guān)閉狀態(tài)時電路始終處于空閑狀態(tài),以將功耗降至最低。
光耦合器技術(shù)進入市場已超過30年;一些工程師對轉(zhuǎn)向新的隔離器技術(shù)保持謹慎。大多數(shù)制造商都要將產(chǎn)品提交監(jiān)管機構(gòu)批準(zhǔn),并清楚展示其隔離器通過了哪些標(biāo)準(zhǔn)。諸如ADI公司數(shù)字隔離器的器件均以聚酰亞胺為絕緣體,這種材料也用于許多光耦合器之中。在某些情況下,它們是按照與光耦合器相同的安全標(biāo)準(zhǔn)進行測試,而在其他情況下(如VDE V 0884-10),則專門針對數(shù)字隔離器制定了具體標(biāo)準(zhǔn)。例如,表1展示了ADuM140x系列隔離器的機構(gòu)認證。
其他問題涉及數(shù)字隔離器承受過壓浪涌的能力,以及它們對共模電壓和磁場干擾形式的瞬變的抗干擾能力。幸運的是,借助聚酰亞胺絕緣材料,ADI公司的數(shù)字隔離器可以承受最高6 kV的浪涌達10秒。由于隔離柵上只有極低的寄生電容,因此,磁性隔離器相對于其他技術(shù)還具有極佳的共模瞬變抗擾度(CMTI)。例如,典型高速光耦合器的CMTI規(guī)格為1至10 kV/μs,而磁性數(shù)字隔離器可抑制35 kV/μs以上的共模瞬變。
乍一看,對磁場干擾的擔(dān)心似乎非常合理,因為采用微變壓器的隔離器利用磁場來橫跨隔離柵發(fā)射脈沖。有人可能認為,足夠強的磁場可能會干擾脈沖,從而導(dǎo)致輸出錯誤。然而,由于變壓器及其空芯的半徑非常小,因此只有非常大的磁場或極高的頻率才能產(chǎn)生故障。圖2所示的最大容許電流和頻率仍可以保證AD344x隔離器的輸出無故障。例如,只有超過500 A(1 MHz,距離器件 5 mm)的電流才可能觸發(fā)故障輸出。理論上,產(chǎn)生錯誤輸出所需要的幅度和頻率組合遠遠超過了絕大多數(shù)應(yīng)用的范圍。
圖2.ADuM344x可保證無錯運行的最大容許電流和頻率
高速運行
當(dāng)隔離測量系統(tǒng)使用高采樣速率時,用光耦合器隔離串行總線可能是比較困難的任務(wù)。接收器光電二極管的寄生電容限制了光耦合器傳輸數(shù)字信號的速度。您可以通過增加來自LED的光量來提高該寄生電容的充電速度,但這樣做會增加功耗。另外,很少有光耦合器在每個封裝內(nèi)只沿同一方向提供兩個以上的通道,而且通常不包括與通道間匹配相關(guān)的時序規(guī)格。雖然假定同一封裝中的光耦合器之間具有良好匹配合乎邏輯,但缺少印制的規(guī)格意味著您必須做出工程設(shè)計假設(shè)。與依賴非印制規(guī)格的情況相同,大多數(shù)謹慎的工程師會選擇留出充足的設(shè)計裕量,工作性能遠遠低于采用單個光耦合器時數(shù)據(jù)手冊指示的性能。
使用數(shù)字隔離器的另一優(yōu)勢是,產(chǎn)品可采用4通道器件形式,保證速度最高可達150 Mbps。另外,所有數(shù)字隔離器制造商都在數(shù)據(jù)手冊的時序部分提供了保證通道間匹配規(guī)格。例如,ADI公司的ADuM344x隔離器在整個工作溫度范圍內(nèi)的保證通道間傳播延遲失配小于2 ns。實際使用中,這意味著可以在數(shù)據(jù)手冊列出的速度下使用數(shù)字隔離器,而無需針對較大或未知的器件間或通道間偏斜來下調(diào)系統(tǒng)性能。
圖3.可以用單個ADM2682E實現(xiàn)全雙工、隔離式RS-485接口
集成
由于數(shù)字隔離器技術(shù)兼容標(biāo)準(zhǔn)CMOS工藝,因此,集成額外的功能以簡化系統(tǒng)設(shè)計相對較容易。例如,傳統(tǒng)的熱電偶測量器件可能用多個光耦合器來實現(xiàn)低速SPI接口,并用具有驅(qū)動器和調(diào)節(jié)器的隔離變壓器來為隔離前端供電。利用集成隔離電源的數(shù)字隔離器(如 ADuM5401),整個隔離系統(tǒng)成為帶四個數(shù)據(jù)通道和隔離電源的單個集成電路。與使用分立隔離器和隔離電源相比,這種方式提高了可靠性,節(jié)省了大量電路板空間,降低了成本。
評論