ADC信噪比的分析及高速高分辨率ADC電路的實(shí)現(xiàn)
在雷達(dá)、導(dǎo)航等軍事領(lǐng)域中,由于信號(hào)帶寬寬(有時(shí)可能高于10mhz),要求adc的采樣率高于30msps,分辨率大于10位。目前高速高分辨率adc器件在采樣率高于10msps時(shí),量化位數(shù)可達(dá)14位,但實(shí)際分辨率受器件自身誤差和電路噪聲的影響很大。在數(shù)字通信、數(shù)字儀表、軟件無(wú)線電等領(lǐng)域中應(yīng)用的高速adc電路,在輸入信號(hào)低于1mhz時(shí),實(shí)際分辨率可達(dá)10位,但隨輸入信號(hào)頻率的增加下降很快,不能滿足軍事領(lǐng)域的使用要求。
本文引用地址:http://www.ex-cimer.com/article/20833.htm針對(duì)這一問(wèn)題,本文主要研究在不采用過(guò)采樣、數(shù)字濾波和增益自動(dòng)控制等技術(shù)條件下,如何提高高速高分辨率adc電路的實(shí)際分辨率,使其最大限度地接近adc器件自身的實(shí)際分辨率,即最大限度地提高adc電路的信噪比。為此,本文首先從理論上分析了影響adc信噪比的因素;然后從電路設(shè)計(jì)和器件選擇兩方面出發(fā),設(shè)計(jì)了高速高分辨率adc電路。經(jīng)實(shí)測(cè)表明,當(dāng)輸入信號(hào)頻率為0.96mhz時(shí),該電路的實(shí)際分辨率為11.36位;當(dāng)輸入信號(hào)頻率為14.71mhz日寸,該電路的實(shí)際分辨率為10.88位。
1 影響adc信噪比因素的理論分析
adc的實(shí)際分辨率是用有效位數(shù)enob標(biāo)稱(chēng)的。不考慮過(guò)采樣,當(dāng)滿量程單頻理想正弦波輸入時(shí),實(shí)際分辨率可用下式表示:
enob=[sina0(db)-1.76]/6.02 (1)
式中,sinad表示adc的信噪失真比,指adc滿量程單頻理想正弦波輸入信號(hào)的有效值與adc輸出信號(hào)的奈奎斯特帶寬內(nèi)的全部其它頻率分量(包括諧波分量,但不包括直流允量)的總有效值之比。
adc的信噪比snr,指adc滿量程單頻理想正弦波輸入信號(hào)的有效值與adc輸出信號(hào)的奈奎斯特帶寬內(nèi)的全部其它頻率分量(不包括直流分量和諧波分量)總有效值之比。
由此可知,當(dāng)adc的總諧波失真thd一定時(shí),有效位數(shù)enob取決于snr;adc的snr越高,其有效位數(shù)enob就越高。下面就來(lái)分析影響adc信噪比snr的因素。
理想adc的噪聲由其固有的量化誤差(也稱(chēng)為量化噪聲,如圖1所示)產(chǎn)生。但實(shí)際使用的adc是非理想器件,它的實(shí)際轉(zhuǎn)換曲線與理想轉(zhuǎn)換曲線之間存在偏差,表現(xiàn)為多種誤差,如零點(diǎn)誤差、滿度誤差、增益誤差、積分非線性誤差inl、微分非線性誤差dnl等。其中,零點(diǎn)誤差、滿度誤差、增益誤差是恒定誤差,只影響adc的絕對(duì)精度,不影響adc的snr。inl指的是在校準(zhǔn)上述恒定誤差的基礎(chǔ)上,adc實(shí)際轉(zhuǎn)換曲線與理想轉(zhuǎn)換曲線的最大偏差。而dnl指的是adc實(shí)際量化間隔與理想量化間隔的最大偏差,改變adc的量化誤差,能更直接地計(jì)算出adc實(shí)際轉(zhuǎn)換曲線與理想轉(zhuǎn)換曲線的偏差對(duì)adc的snr的影響。
非理想adc,除了上述誤差外,還有各種噪聲,如熱噪聲、孔徑抖動(dòng)。前者是由半導(dǎo)體器件內(nèi)部分子熱運(yùn)動(dòng)產(chǎn)生的,后者是由adc孔徑延時(shí)的不確定性造成的。而adc的外圍電路同樣會(huì)帶來(lái)噪聲,如adc輸入級(jí)電路的熱噪聲、電源/地線上的雜波、空間電磁波干擾、外接時(shí)鐘的不穩(wěn)定性(導(dǎo)致adc各采樣時(shí)鐘沿出現(xiàn)時(shí)刻不確定,帶來(lái)孔徑抖動(dòng))等,可以把它們都等效為adc的上述兩種內(nèi)部噪聲。上述誤差和噪聲的存在,導(dǎo)致adc的snr下降。下面先給出理想adc的snr計(jì)算公式,然后具體分析微分非線性誤差dnl、孔徑抖動(dòng)△tj和熱噪聲對(duì)adc的snr的影響。
1.1理想adc的snr
理想adc的量化誤差g(υ)與滿量程內(nèi)輸入信號(hào)的電壓v的關(guān)系如圖1所示。量化誤差為在[-q/2,q/2]內(nèi)均勻分布且峰-峰值等于q(q=1lsb,lsb表示理想adc的最小量化間隔)的鋸齒波信號(hào)。
設(shè)n位adc滿量程電壓為±1v,輸入信號(hào)為s(t)=sinωt,則輸入信號(hào)電壓有效值vs=1/√2=2n/2√2×q,量化噪聲電壓有效值于是得adc輸出信噪比為
snr=6.02n+1.76(db)
1.2微分非線性誤差dnl
非理想adc的量化間隔是非等寬的,這將導(dǎo)致adc器件不能完全正確地把模擬信號(hào)轉(zhuǎn)化成相應(yīng)的二進(jìn)制碼,從而造成snr的下降;且adc每個(gè)量化的二進(jìn)制碼所對(duì)應(yīng)的量化間隔都不同,為便于分析,用ε(lsb)= εq表示實(shí)際量化間隔與理想量化間隔誤差的有效值,并近似認(rèn)為由于dnl的影響,在無(wú)失碼條件(dnl<1lsb)下,量化誤差均勻分布在[-上q+εq/2,q+εq/2]和[-q-εq/2,q-εq/2]內(nèi)。如圖1 中實(shí)線所示(虛線偽理想adc量化誤差)。這樣,在考慮了dnl之后的adc量化噪聲電壓vq_dnl為:
1.3 孔徑抖動(dòng)△tj孔徑時(shí)間又稱(chēng)孔徑延遲時(shí)間,是指對(duì)adc發(fā)出采樣命令(采樣時(shí)鐘邊沿)時(shí)刻與實(shí)際開(kāi)始采樣時(shí)刻之間的時(shí)間間隔。相鄰兩次采樣的孔徑時(shí)間的偏差稱(chēng)為孔徑抖動(dòng),記作△tj??讖蕉秳?dòng)造成了信號(hào)的非均勻采樣,引起了誤差,設(shè)adc滿量程電壓為±1v輸入信號(hào)為s(t)=sinωt,孔徑抖動(dòng)有效值為σ△tj,則由孔徑抖動(dòng)帶來(lái)的誤差電壓為:
1.4熱噪聲這里將adc電路中微分非線性誤差dnl、孔徑抖動(dòng)△tj外的其它噪聲都等效為adc輸入端的熱噪聲電壓vtn,設(shè)其有效值為σtn。
1.5非理想adc的snr
一般情況下,量化噪聲、微分非線性誤差dnl、孔徑抖動(dòng)△tj和熱噪聲彼此相互獨(dú)立,綜合芍慮這四個(gè)因素的影響,可得到adc的snr計(jì)算公式如卡:
式中,n--adc的量化位數(shù)ε--adc的實(shí)際量化間隔與理想量化間隔誤差的有效值,單位lsbfin--adc輸入信號(hào)頻率,單位hzσ△tj--adc的孑l徑抖動(dòng)有效值,單位sσtn--等效到adc輸入端的熱噪聲的有效值單位lsb對(duì)于高分辨率adc器件,其固有量化誤差、微分非線性誤差dnl和器件熱噪聲均較小。當(dāng)fin較高時(shí),adc電路的snr主要取決于孔徑抖動(dòng),此時(shí)有
2基于ad6644ast一65的高速高分辨率adc電路設(shè)計(jì)實(shí)例電路設(shè)計(jì)目標(biāo):有效位數(shù)enob≥10.50bit、采樣率為40msps、輸入信號(hào)頻率小于15mhz,輸入信號(hào)幅度為-ldbfs。該指標(biāo)能滿足數(shù)字儀表、高速數(shù)據(jù)采集卡、軟件無(wú)線電和雷達(dá)、導(dǎo)航等領(lǐng)域中數(shù)字波束形成的要求。
2.1電路設(shè)計(jì)與器件選擇
本電路主要由模/數(shù)轉(zhuǎn)換器adc、輸入電路、輸出屯路、時(shí)鐘電路和電源電路組成,如圖2所示。
2.1.1時(shí)鐘電路時(shí)鐘電路的設(shè)計(jì)主要包括ad6644ast-65采樣時(shí)鐘相位噪聲指標(biāo)的確定以及pecl差分時(shí)鐘的實(shí)現(xiàn)。
adc電路的孔徑抖動(dòng)有效值σ△tj,包括adc器件自
2.1.2 adc輸入電路
adc輸入電路多采用運(yùn)放直流耦合或變壓器交流耦合方式,為輸入信號(hào)提供增益、偏置和緩沖。
由于運(yùn)放為有源器件,除具有一定的諧波失真外,還存在主要集中在低頻段的1/f噪聲和較寬頻帶內(nèi)的白噪聲。這些噪聲和諧波失真都降低了運(yùn)放的信噪比snr和有效位數(shù)enob。當(dāng)運(yùn)放的snr不明顯優(yōu)于甚至低于adc的snr時(shí),它帶來(lái)的噪聲是不容忽視的,對(duì)于高分辨率adc電路,甚至是不能接受的。而作為無(wú)源器件的變壓器,一般認(rèn)為它的噪聲和諧波失真是微乎其微、可以忽略的。因此,本電路的輸入電路采用變壓器交流耦合方式,選用mini-circuits公司的變壓器t4-6t。 為進(jìn)行比較,同時(shí)也提供運(yùn)放直流耦合方式,采用adi公司的低噪運(yùn)放ad8138。根據(jù)ad8138的關(guān)參數(shù),計(jì)算得到的ad8138輸出的總諧波失真和熱噪聲之和大于1lsb。該指標(biāo)可能導(dǎo)致無(wú)法滿足電路熱噪聲不大于1.50lsb的設(shè)計(jì)要求,并帶來(lái)更大的諧波失真。因此可預(yù)知,采用ad8138時(shí),adc電路的有效位數(shù)enob會(huì)比采用變壓器時(shí)的有效位數(shù)enob有所下降,甚至達(dá)不到設(shè)計(jì)要求。
2.1.3 adc輸出電路
adc的模擬輸入和數(shù)據(jù)輸出之間存在少量的寄生電容,adc數(shù)據(jù)輸出線上的噪聲會(huì)通過(guò)這些寄生電容耦合到模擬輸入端,導(dǎo)致adc的snr和有效位數(shù)enob下降。為解決這一問(wèn)題,可在adc數(shù)據(jù)輸出端接一鎖存器。
為減小adc電源的波動(dòng),應(yīng)盡量降低adc輸出端的負(fù)載電容和輸出電流。在adc數(shù)據(jù)輸出端接一鎖存器可避免將其直接連在數(shù)據(jù)總線上,有效限制了其輸出端的負(fù)載電容;在adc每一個(gè)數(shù)據(jù)輸出端都串聯(lián)一個(gè)電阻,可限制其輸出電流。
本電路采用74lc574作為ad6644ast-65的輸出數(shù)據(jù)鎖存器,同時(shí)每一個(gè)數(shù)據(jù)輸出端都串聯(lián)一個(gè)100ω的電阻。
2.1.4電源、地和去耦電路
ad6644ast-65的電源抑制比psrr≈±lmv/v,當(dāng)外接電源的紋波為峰-峰值100mv時(shí),等效于在ad6644ast-65輸入端產(chǎn)生100μv(0.77lsb)大小的噪聲,這相對(duì)于設(shè)計(jì)指標(biāo)而言是不能接受的。為減小外接電源對(duì)電路的影響,本電路采用linear公司的低壓差ldo線性穩(wěn)壓器ltl086-5和ltlll7-3.3(兩個(gè)芯片的psrr均大于60db) 對(duì)外接穩(wěn)壓電源進(jìn)行穩(wěn)壓,為ad6644ast-65等模擬電路提供5v電源和3.3v電源。
時(shí)鐘、adc的輸出信號(hào)以及后級(jí)數(shù)字電路的數(shù)字信號(hào)的跳變都會(huì)引起電源電流的急劇變化,由于印刷電路板的電源線和地線上存在分布電阻、電容和電感,當(dāng)有變化的電流經(jīng)過(guò)時(shí),其上的壓降也隨之變化;頻率較高時(shí),就表現(xiàn)為電地間的高頻雜波。為降低這類(lèi)雜波干擾,本電路采取以下措施: · 時(shí)鐘電路的5v電源,由vcc_5va串聯(lián)一磁珠fb得到;
ad6644ast-65后級(jí)數(shù)字電路的3.3v電源,由vcc_3.3va串聯(lián)一磁珠fb得到;
模擬地和數(shù)字地分開(kāi)布線,并在一點(diǎn)用磁珠fb相連;
adc的所有電源管腳都就近對(duì)地接去耦電容。
磁珠對(duì)mhz級(jí)以上的信號(hào)有較好的吸收作用,能有效降低時(shí)鐘電源、數(shù)字電源對(duì)ad6644ast-65模擬電源的影響,以及數(shù)字地對(duì)模擬地的影響。
去耦對(duì)于高速高分辨率adc電路尤為重要。為此,本電路采用0.01μf的npo材料(屬低損耗、超穩(wěn)定的電容材料,電氣特性基本上不隨溫度、電壓、時(shí)間的變化而變化,自諧振頻率較高,適用于高頻場(chǎng)合)自0 1206封裝的貼片電容和0.1μf的x7r材料(屬穩(wěn)定性電容材料,電氣特性隨溫度、電壓、時(shí)間變化不明顯,適用于中、低頻場(chǎng)合)的0805封裝的貼片電容并聯(lián),有效地濾除電地間較寬頻帶的雜波。
2.1.5電路板的布局布線
adc界于模擬電路和數(shù)字電路之間,且通常被劃歸為模擬電路。為減小數(shù)字電路的干擾,應(yīng)將模擬電路和數(shù)字電路分開(kāi)布局;為減小信號(hào)線上的分布電阻、電容和電感,應(yīng)盡量縮短導(dǎo)線長(zhǎng)度和增大導(dǎo)線之間的距離;為減小電源線和地線的阻抗,應(yīng)盡量增大電源線和地線的寬度,或采用電源平面、地平面。本電路在設(shè)計(jì)印刷電路板時(shí),都遵循了以上原則。 2.2電路測(cè)試結(jié)果
采用信號(hào)發(fā)生器hp8640b產(chǎn)生0~15mhz的單頻正弦信號(hào),經(jīng)相應(yīng)帶通濾波器濾波(各次諧波均小于-90dbc)后作為本電路的輸入信號(hào),濾波后信號(hào)在ad6644ast-65輸入端幅度為-ldbfs。
ad6644ast-65輸出數(shù)字信號(hào)經(jīng)74lc574鎖存后,存儲(chǔ)于邏輯分析儀hpl6702a中。hpl6702a狀態(tài)分析時(shí)鐘取自ad6644ast-65的dry管腳,該信號(hào)頻率和ad6644ast-65采樣時(shí)鐘頻率一致,為40mhz。
通過(guò)對(duì)邏輯分析儀hpl6702a每次存儲(chǔ)的數(shù)字信號(hào)進(jìn)行16384點(diǎn)fft分析,可得到奈奎斯特帶寬內(nèi)總功率pσ、輸入信號(hào)功率只以及總諧波失真與噪聲功率之和pn+thd=pσ-ps。經(jīng)計(jì)算得到電路的有效位數(shù)enob=[sinad(db)-1.76]/6.02=[ps (db)-pn+thd (db)-1.76]/6.02。
圖3(a)、(b)、(c)為在三種不同測(cè)試條件下,ad6644ast-65輸出數(shù)字信號(hào)的fft分析頻譜圖和有效位數(shù)enob。
圖3(c)表明,當(dāng)fin=0.96mhz、ad6644ast-65輸入端采用運(yùn)放ad8138直流耦合時(shí),電路熱噪聲和諧波失真明顯增加,電路的有效位數(shù)enob約為10.74bit,比圖3(a)的enob小0.6bit左右。由此可見(jiàn),有源器件對(duì)高速高分辨率adc電路性能的影響是很大的。 理論分析和實(shí)際電路的測(cè)試結(jié)果都說(shuō)明,高速高分辨率adc電路設(shè)計(jì)應(yīng)選用低噪器件;當(dāng)輸入信號(hào)頻率較高時(shí),應(yīng)選用低相位抖動(dòng)的時(shí)鐘源;在進(jìn)行電路扳布局布線時(shí),應(yīng)注意電源噪聲的抑制和減小數(shù)字電路對(duì)模擬電路的影響。
評(píng)論