IR2110實現(xiàn)高壓大功率直流開關(guān)電源
開關(guān)電源的形式與種類很多,盡管各種不同的開關(guān)電源能達(dá)到的性能指標(biāo)也各不相同,但總是由以下幾個部分組成:
(1)控制單元
一般都是由專門的集成電路擔(dān)當(dāng)這部分工作,也有用單片機、DPS作為控制單元核心的,視具體需要而定。
(2)功率元件
目前一般使用IGBT和MOSFET;一般高頻中小功率情況下用場效應(yīng)管,大功率情況下用IGBT,其電路結(jié)構(gòu)上大同小異,柵極高電平(一般是10~20 V,常用的是15 V)導(dǎo)通,低電平(-5~0 V)截止。其作用是開關(guān)電源的核心。
(3)驅(qū)動電路
這部分是開關(guān)電源的靈魂,是連接控制單元與功率管的橋梁??刂茊卧鰜淼碾娖揭话銦o法直接驅(qū)動功率管,需要有一個電平的轉(zhuǎn)換及電流驅(qū)動;對于驅(qū)動電路而言,功率管的柵極即為負(fù)載,一般的功率管柵源之間有一個寄生電容,故驅(qū)動電路的負(fù)載是一個容性負(fù)載,若驅(qū)動電流不夠,或提高頻率,方波會產(chǎn)生畸變,無法達(dá)到設(shè)計目的。因此功率電子的驅(qū)動是整個設(shè)計的重點,也是難點。
開關(guān)穩(wěn)壓電源中的功率開關(guān)管要求在關(guān)斷時能迅速關(guān)斷,并能維持關(guān)斷期間的漏電流近似等于零;在導(dǎo)通時要求能迅速導(dǎo)通,并且維持導(dǎo)通期間的管壓降也近似等于零。開關(guān)管趨于關(guān)斷時的下降時間和趨于導(dǎo)通時的上升時間的快慢是降低開關(guān)晶體管損耗功率,提高開關(guān)穩(wěn)壓電源效率的主要因素。要縮短這兩個時間,除選擇高反壓、高速度、大功率開關(guān)管以外,主要還取決于加在開關(guān)管柵極的驅(qū)動信號。驅(qū)動波形的要求如下:
?、衮?qū)動波形的正向邊緣一定要陡,幅度要大,以便減小開關(guān)管趨于導(dǎo)通時的上升時間;
?、谠诰S持導(dǎo)通期間內(nèi),要能保證開關(guān)管處在飽和導(dǎo)通狀態(tài),以減小開關(guān)管的正向?qū)ü軌航担瑥亩档蛯?dǎo)通期間開關(guān)管的集電極功率損耗;
?、郛?dāng)正向驅(qū)動結(jié)束時,驅(qū)動幅度要減小,以便使開關(guān)管能很快地脫離飽和區(qū),以減小關(guān)閉儲存時問;
?、茯?qū)動波形的下降邊緣也一定要陡,幅度要大,以便減小開關(guān)管趨于截止時的下降時間。理想的驅(qū)動波形如圖1所示。其中圖1(a)是漏極電壓和電流波形圖,圖1(b)是柵極驅(qū)動信號波形圖。
2 IR2110柵極驅(qū)動抗干擾技術(shù)
IR2110是一種雙通道高壓、高速電壓型功率開關(guān)器件柵極驅(qū)動器,具有自居浮動電源,驅(qū)動電路十分簡單,只用一個電源可同時驅(qū)動上下橋臂。但是IR2110芯片有他本身的缺陷,不能產(chǎn)生負(fù)壓,在抗干擾方面比較薄弱,以下詳細(xì)結(jié)合實驗介紹抗干擾技術(shù)。
2.1 芯片功能簡介
IR2110包括:邏輯輸入、電平轉(zhuǎn)換、保護、上橋臂側(cè)輸出和下橋臂側(cè)輸出。邏輯輸入端采用施密特觸發(fā)電路,提高抗干擾能力。輸入邏輯電路與TTL/COMS電平兼容,其輸入引腳閾值為電源電壓Vdd的10%,各通道相對獨立。由于邏輯信號均通過電平耦合電路連接到各自的通道上,允許邏輯電路參考地(VSS)與功率電路參考地(COM)之間有-5 V~+5 V的偏移量,并且能屏蔽小于50 ns脈沖,這樣便具有較理想的抗噪聲效果。兩個高壓MOS管推挽驅(qū)動器的最大灌入或輸出電流可達(dá)2 A,上橋臂通道可以承受500 V的電壓。輸入與輸出信號之間的傳導(dǎo)延時較小,開通傳導(dǎo)延時為120 ns,關(guān)斷傳導(dǎo)延時為95 ns。電源VCC典型值為15 V,邏輯電源和模擬電源共用一個15 V電源,邏輯地和模擬地接在一起。輸出端設(shè)有對功率電源VCC的欠壓保護,當(dāng)小于8.2 V時,封鎖驅(qū)動輸出。
IR2110具有很多優(yōu)點:自舉懸浮驅(qū)動電源可同時驅(qū)動同一橋臂的上、下兩個開關(guān)器件,驅(qū)動500 V主電路系統(tǒng),工作頻率高,可以達(dá)到500 kHz;具有電源欠壓保護相關(guān)斷邏輯;輸出用圖騰柱結(jié)構(gòu),驅(qū)動峰值電流為2 A;兩通道設(shè)有低壓延時封鎖(50 ns)。芯片還有一個封鎖兩路輸出的保護端SD,在SD輸入高電平時,兩路輸出均被封鎖。IR2110的優(yōu)點,給實際系統(tǒng)設(shè)計帶來了極大方便,特別是自舉懸浮驅(qū)動電源大大簡化了驅(qū)動電源設(shè)計,只用一路電源即可完成上下橋臂兩個功率開關(guān)器件的驅(qū)動。IR2110的典型應(yīng)用電路如圖2所示。
但是在這種電路的使用上存在很大的問題,當(dāng)高壓側(cè)電壓緩慢地往上升時可以清楚地看見毛刺越來越嚴(yán)重,電壓很低時管子發(fā)熱嚴(yán)重,芯片很容易燒掉。這些問題都是由于2 11 0自身的一些不足產(chǎn)生的,IR2110不能產(chǎn)生負(fù)偏壓,如果用于驅(qū)動橋式電路,在半橋電感負(fù)載電路下運行,處于關(guān)斷狀態(tài)下的IGBT,由于其反并聯(lián)二極管的恢復(fù)過程,將承受C-E電壓的急劇上升。此靜態(tài)的dv/dt通常比IGBT關(guān)斷時的上升率高。由于密勒效應(yīng),此dv/dt在集電極,柵極問電容內(nèi)產(chǎn)生電流,流向柵極驅(qū)動電路,如圖3所示。雖然在關(guān)斷狀態(tài)時柵極電壓Vg為零,由于柵極電路的阻抗(柵極限流電阻Rg,引線電感Lg),該電流令VGE增加,趨向于VGE(th)。最嚴(yán)重的情況是該電壓達(dá)到閾值電壓,使IGBT導(dǎo)通,導(dǎo)致橋臂短路。IR2110驅(qū)動輸出阻抗不夠小,沿柵極的灌人電流會在驅(qū)動電壓上加上比較嚴(yán)重的毛刺干擾。
2.2 IR2110改進(jìn)抗干擾電路
2.2.1 帶電平箝位的IR2110驅(qū)動電路
針對IR2110的不足,對輸出驅(qū)動電路進(jìn)行了改進(jìn),可以采用在柵極限流電阻上反并聯(lián)一個二極管,但在大功率的環(huán)境下不太明顯。本文介紹的第一種方法就是下面如圖4所示電路。在關(guān)斷期間將柵極驅(qū)動電平箝位到零電平。在橋臂上管開通期間驅(qū)動信號使Q1導(dǎo)通、Q2截止,正常驅(qū)動。上管關(guān)斷期間,Q1截止,Q2柵極高電平,導(dǎo)通,將上管柵極電位拉到低電平(三極管的飽和壓降)。這樣,由于密勒效應(yīng)產(chǎn)生的電流從Q2中流過,柵極驅(qū)動上的毛刺可以大大的減小。下管工作原理與上管完全相同,不再累述。
2.2.2 IR2110負(fù)壓產(chǎn)生電路
在大功率IGBT場合,各路驅(qū)動電源獨立,集成驅(qū)動芯片一般都有產(chǎn)生負(fù)壓得功能,如EXB841系列,M57957系列等,在IGBT關(guān)斷期間柵極上施加一個負(fù)電壓,一般為-3~-5 V。其作用也是為了增強IGBT關(guān)斷的可靠性。防止由于密勒效應(yīng)而造成的誤導(dǎo)通。IR2110芯片內(nèi)部雖然沒有產(chǎn)生負(fù)壓功能,但可以通過外加幾個無源器件來實現(xiàn)產(chǎn)生負(fù)壓得功能,如圖5所示。在上下管驅(qū)動電路中均加上由電容和5 V穩(wěn)壓管組成的負(fù)壓電路。
其工作原理為:電源電壓為20 V,在上電期間,電源通過Rg給Cg充電,Cg保持5 V的電壓,在LIN為高電平的時候,LO輸出0 V,此時S2柵極上的電壓為-5 V,從而實現(xiàn)了關(guān)斷時負(fù)壓。
對于上管S1,HIN為高電平時,HO輸出為20 V,加在柵極上的電壓為15 V。當(dāng)HIN為低電平時,HO輸出0 V,S1柵極為-5 V。
IGBT為電壓型驅(qū)動器件,所以負(fù)壓負(fù)壓電容C5,C6上的電壓波動較小,維持在5 V,自舉電容上的電壓也維持在20 V左右,只在下管S2導(dǎo)通的瞬間有一個短暫的充電過程。
IGBT的導(dǎo)通壓降一般小于3 V,負(fù)壓電容C5的充電在S2導(dǎo)通時完成。對于C5,C6的選擇,要求大于IGBT柵極輸入寄生電容Ciss。自舉電容電電路中的二極管D1必須是快恢復(fù)二極管,應(yīng)留有足夠的電流余量。此電路與一般的帶負(fù)壓驅(qū)動芯片產(chǎn)
手機電池相關(guān)文章:手機電池修復(fù)
評論