<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > TTL或非門、集電極開路門和三態(tài)門電路

          TTL或非門、集電極開路門和三態(tài)門電路

          作者: 時(shí)間:2011-07-25 來源:網(wǎng)絡(luò) 收藏

          TTL或非門、集電極開路門和三態(tài)門電路

          1.TTL或非門

            下圖為TTL或非門的邏輯電路及其代表符號。

            由圖可見 ,或非邏輯功能是對TTL與非門的結(jié)構(gòu)改進(jìn)而來,即用兩個(gè) 三極管T2A和T2B代替T2。
            若兩輸入端為低電平,則T2A和T2B均將截止 ,iB3=0,輸出為高電平。
            若A、B兩輸入端中有一個(gè)為高電平 ,則T2A或T2B將飽和 ,導(dǎo)致iB3>0,iB3便使T3飽和 ,輸出為低電平。這就實(shí)現(xiàn)了或非功能。即。

          2.集電極開路門

            在工程實(shí)踐中將兩個(gè)門的輸出端并聯(lián)以實(shí)現(xiàn)與邏輯的功能稱為線與。
            考察下圖所示的情況。當(dāng)將圖中所示的兩個(gè)邏輯門的輸出連接在一起,并且當(dāng)?shù)谝粋€(gè)門的輸出為高電平(第一個(gè)門的T4導(dǎo)通),第二個(gè)門的輸出為低電平(第二個(gè)門的T3導(dǎo)通)時(shí),正如圖中紅線所示將出現(xiàn)一個(gè)大電流通道,很可能導(dǎo)致晶體管的損壞。

            為了避免線與時(shí)的產(chǎn)生大電流,可以采用集電極開路門(簡稱OC門)來解決 。所謂集電極開路是指從TTL與非門電路的推挽式輸出級中刪去電壓跟隨器,如下圖所示:

            對于一個(gè)兩輸入端的OC門,其在電路中的符號可用下圖來表示:

            為了實(shí)現(xiàn)線與的邏輯功能,可將多個(gè)門電路輸出管T3的集電極至電源VCC之間,加一公共的上拉電阻RP,如下圖所示。為了簡明起見,圖中以兩個(gè)OC門并聯(lián)為例,其中圖標(biāo)“”表示集電極開路之意。

             

            上拉電阻Rp的值可以這樣來計(jì)算,主要考慮OC門必須驅(qū)動一定的拉電流或灌電流負(fù)載。有關(guān)這兩類負(fù)載的概念前已討論,這里仍然適用 ,所不同的是驅(qū)動門是由多個(gè)TTL門的輸出端直接并聯(lián)而成。當(dāng)OC門中的一個(gè)TTL門的輸出為低電平 ,其他為高電平時(shí),灌電流將由一個(gè)輸出BJT(如T1或T2)承擔(dān) ,這是一種極限情況,此時(shí)上拉電阻RP具有限制電流的作用。為保證IOL不超過額定值IOL(max),必須合理選用RP的值。例如VCC=5V,RP=1kΩ,則IOL=5mA。
            另一方面,由于門電路的輸出、輸入電容和接線電容的存在,RP的大小必將影響OC門的開關(guān)速度。RP的值愈大,負(fù)載電容的充電時(shí)間常數(shù)亦愈大,因而開關(guān)速度愈慢。RP的最小值RP(min)可按下式來確定

          RP的最大值RP(max)可按下式來確定:

            實(shí)際上,RP的值選在RP(min)和RP(max)之間,并且選用靠近RP(min)的標(biāo)準(zhǔn)值。

            例:設(shè)TTL與非門74LS01(OC)驅(qū)動8個(gè)74LS04(反相器),試確定一合適大小的上拉電阻RP,設(shè)VCC=5V。

            由以上計(jì)算可知Rp的值可在985Ω至18.75kΩ之間選擇 。為使電路有較快的開關(guān)速度,可選用一標(biāo)準(zhǔn)值為1kΩ的電阻器為宜。
            集電極開路門除了可以實(shí)現(xiàn)多門的線與邏輯關(guān)系外,還可用于直接驅(qū)動較大電流的負(fù)載。

          3.三態(tài)與非門(TSL)

            利用OC門雖然可以實(shí)現(xiàn)線與的功能,但外接電阻Rp的選擇要受到一定的限制而不能取得太小,因此影響了工作速度。同時(shí)它省去了有源負(fù)載,使得帶負(fù)載能力下降。為保持推拉式輸出級的優(yōu)點(diǎn),還能作線與聯(lián)接,人們又開發(fā)了一種三態(tài)與非門,它的輸出除了具有一般與非門的兩種狀態(tài),即輸出電阻較小的高、低電平狀態(tài)外,還具有高輸出電阻的第三狀態(tài),稱為高阻態(tài),又稱為禁止態(tài)。

            一個(gè)簡單的TSL門的電路如上圖所示。其中CS為片選信號輸入端,A、B為數(shù)據(jù)輸入端。
            當(dāng)CS=1時(shí),TSL門電路中的T5處于倒置放大狀態(tài) ,T6飽和,T7截止,即其集電極相當(dāng)于開路。此時(shí)輸出狀態(tài)將完全取決于數(shù)據(jù)輸入端A、B的狀態(tài),電路輸出與輸入的邏輯關(guān)系與一般與非門相同。這種狀態(tài)稱為TSL的工作狀態(tài)。
            當(dāng)CS=0時(shí)T7導(dǎo)通,使T4的基極鉗制于低電平。同時(shí)由于低電平的信號送到T1的輸入端,迫使T2和T3截止 。這樣T3和T4均截止,門的輸出端L出現(xiàn)開路,既不是低電平,又不是高電平 ,這就是第三工作狀態(tài)。這樣,當(dāng)CS為高電平時(shí),TSL門的輸出信號送到總線 ,而當(dāng)CS為低電平時(shí),門的輸出與數(shù)據(jù)總線斷開,此時(shí)數(shù)據(jù)總線的狀態(tài)由其他門電路的輸出所決定。

          七、改進(jìn)型TTL門電路——抗飽和TTL電路

            抗飽和TTL電路是目前傳輸速度較高的一類TTL電路。這種電路由于采用肖特基勢壘二極管SBD鉗位方法來達(dá)到抗飽和的效果 ,一般稱為SBDTTL電路(簡稱STTL電路),其傳輸速度遠(yuǎn)比基本TTL電路為高。

          肖特基勢壘二極管的工作特點(diǎn)如下:
           ?。?)它和PN結(jié)一樣,同樣具有單向?qū)щ娦?,這種鋁-硅勢壘二極管導(dǎo)通電流的方向是從鋁到硅。
           ?。?)AL-SiSBD的導(dǎo)通閾值電壓較低,約為0.4~0.5V ,比普通硅PN結(jié)約低0.2V。
            (3)勢壘二極管的導(dǎo)電機(jī)構(gòu)是多數(shù)載流子 ,因而電荷存儲效應(yīng)很小。
            根據(jù)前面的學(xué)習(xí),我們已經(jīng)知道,BJT工作在飽和時(shí) ,發(fā)射結(jié)和集電結(jié)都處在正向偏置,集電結(jié)正向偏置電壓越大,則表明飽和程度越深。
            為了限制BJT的飽和深度,在BJT的基極和集電極并聯(lián)上一個(gè)導(dǎo)通閾值電壓較低的肖特基二極管,如下圖所示。

            當(dāng)沒有SBD時(shí),隨著基級電壓的升高,電流沿著藍(lán)線方向流動。由于SBD的作用,當(dāng)基級電壓大于0.4V時(shí), SBD首先電導(dǎo)通,電流沿著紅線方向流動(如下圖所示),從而使T的基極電流不會過大(而且使T的集電結(jié)正向偏壓將被鉗制在0.4V左右),因此SBD起到抵抗過飽和的作用,因而又將這種電路稱為抗飽和電路,使電路的開關(guān)時(shí)間大為縮短。

            下圖為肖特基TTL(STTL)與非門的典型電路。與基本TTL與非門電路相比,作了若干改進(jìn)。在基本的TTL電路中 ,T1、T2和T3工作在深度飽和區(qū),管內(nèi)電荷存儲效應(yīng)對電路的開關(guān)速度影響很大?,F(xiàn)在除T4外,其余的BJT均采用SBD鉗位,以達(dá)到明顯的抗飽和效果。其次,基本電路中的所有電阻值這里幾乎都減半。這兩項(xiàng)改進(jìn)導(dǎo)致門電路的開關(guān)時(shí)間大為縮短。由于電阻值的減小也必然會引起門電路功耗的增加。

            

          STTL門電路還有以下三點(diǎn)對基本TTL電路的性能作了改進(jìn):
           ?。?)二極管D被由T4和T5所組成的復(fù)合管所代替,當(dāng)輸出由低電平向高電平過渡時(shí),由于復(fù)合管電路的電流增益很大,輸出電阻很小
          ,從而減小了電路對負(fù)載電容的充電時(shí)間。
           ?。?)電路輸入端所加的SBD—DA和DB,用來減小由門電路之間的連線而引起的雜散信號。
           ?。?)基本電路中的Re2(1kΩ)改為由T6與Rc6 、Rb6的組合電路所代替。這個(gè)組合電路是有源非線性電阻。當(dāng)其兩端的電壓(發(fā)射極e2對地)較低時(shí),呈現(xiàn)很大的電阻,而當(dāng)其兩端的電壓達(dá)到0.7V左右時(shí),則呈現(xiàn)很小的電阻。這樣,當(dāng)與非門的全部輸入端由低電平轉(zhuǎn)向高電平時(shí),有源電阻開始不導(dǎo)通使T3很快達(dá)到飽和;反之,當(dāng)電路的全部輸入端(或其中之一)由高電平轉(zhuǎn)向低電平時(shí),T2和T3將截止,由于T3飽和時(shí),VBE=0.7V,在轉(zhuǎn)換開始的瞬間,有源電阻的阻值很小
          T3基區(qū)存儲的電荷通過此低阻回路很快消散。由于這個(gè)緣故,有源非線性電路稱為有源下拉電路 ,它與有源上拉電路是對應(yīng)的 。意即將 VBE3從0.7 V很快拉到0V,從而使輸出電壓很快升高,即提高了開關(guān)速度。

            基于上述特點(diǎn),STTL與非門具有較為理想的傳輸特性。與基本TTL反相器的傳輸特性相比,C點(diǎn)不再存在了,由B點(diǎn)直接下降到D點(diǎn),即傳輸特性變化非常陡峭,見下圖。

            除典型的肖特基型(STTL)外,尚有低功耗肖特基型(LSTTL)、先進(jìn)的肖特基型(ASTTL),先進(jìn)的低功耗型(ALSTTL)等,它們的技術(shù)參數(shù)各有特點(diǎn),是在TTL工藝的發(fā)展過程中逐步形成的。

          TTL門電路的各種系列的性能比較

          類型
          基本的TTL(74系列)
          肖特基TTL(74S系列)
          低功耗肖特基TTL(74S系列)
          先進(jìn)的肖特基TTL(74AS系列)
          先進(jìn)的低功耗肖特基TTL(74ALS系列)
          參數(shù)
          tpd/ns
          10
          3
          9
          1.5
          4
          PD/mW
          10
          20
          2
          20
          1
          DP/pJ
          100
          60
          18
          30
          4

          電氣符號相關(guān)文章:電氣符號大全


          電流傳感器相關(guān)文章:電流傳感器原理
          上拉電阻相關(guān)文章:上拉電阻原理


          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();