<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 一階電路的零狀態(tài)響應(yīng)

          一階電路的零狀態(tài)響應(yīng)

          作者: 時(shí)間:2011-07-17 來(lái)源:網(wǎng)絡(luò) 收藏
          一階電路的零狀態(tài)響應(yīng)

          當(dāng)所有的儲(chǔ)能元件均沒(méi)有初始儲(chǔ)能,電路處于零初始狀態(tài)情況下,外加激勵(lì)在電路中產(chǎn)生的響應(yīng)稱為零狀態(tài)響應(yīng)。

          下面分別討論激勵(lì)為直流、正弦交流情況下,電路的零狀態(tài)響應(yīng)。

          一、直流激勵(lì)下的零狀態(tài)響應(yīng)。

          1、串聯(lián)電路

          如圖8-5-1所示,開(kāi)關(guān)S原置于位置2,電路已達(dá)穩(wěn)態(tài),即,電容上無(wú)初始儲(chǔ)能。在時(shí)刻,開(kāi)關(guān)S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應(yīng)、、。

          圖8-5-1

          當(dāng),開(kāi)關(guān)S切換至1,由得:

          (式8-5-1)

          這是一個(gè)一階線性常系數(shù)非齊次微分方程。由微分方程求解的知識(shí)得,特解:

          齊次方程的通解:

          全解為:

          (式8-5-2)

          根據(jù)換路定則:

          由(式8-5-2):

          因此:

          最終求得:

          (式8-5-3)

          (式8-5-4)

          (式8-5-5)

          根據(jù)(式8-5-3)—(式8-5-5),畫(huà)出零狀態(tài)響應(yīng)、隨時(shí)間變化的曲線,如圖8-5-2所示。

          圖8-5-2

          在圖8-5-1所示電路中,當(dāng)后,電壓源對(duì)電容充電。電容從初始電壓為零逐漸增大,最終充電至穩(wěn)態(tài)電壓,而電流則從初始值逐漸減小,最終衰減至穩(wěn)態(tài)值零。

          2、串聯(lián)電路。

          如圖8-5-3所示,開(kāi)關(guān)S置于位置2,電路已達(dá)穩(wěn)態(tài),即,電感L上無(wú)初始儲(chǔ)能。在時(shí)刻,開(kāi)關(guān)S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應(yīng)、

          圖8-5-3

          當(dāng)后,開(kāi)關(guān)S切換至1,由得:

          (式8-5-6)

          (式8-5-6)是一個(gè)一階線性常系數(shù)非齊次微分方程。該方程的全解是特解和齊次方程的通解之和,即:

          (式8-5-7)

          表示全解,表示特解,表示通解。換路后電路達(dá)到新的穩(wěn)定狀態(tài)的穩(wěn)態(tài)電流就是特解,即:

          (式8-5-8)

          其通解為:

          (式8-5-9)

          于是,全解為:

          (式8-5-10)

          (式8-5-10)中的積分常數(shù)A由初始條件確定。在時(shí)刻,根據(jù)換路定則:

          由(式8-5-10):

          因此:

          最終得到:

          (式8-5-11)

          (式8-5-12)

          (式8-5-13)

          顯然,,滿足。圖8-5-4繪出了零狀態(tài)響應(yīng)、的曲線。

          圖8-5-4

          二、正弦交流激勵(lì)下的零狀態(tài)響應(yīng)

          1、串聯(lián)電路

          仍以圖8-5-1所示電路為例,將直流電壓源改為正弦交流電壓源,當(dāng)后,由得到電路的微分方程為:

          (式8-5-14)

          的全解等于特解和通解之和,即:

          由于激勵(lì)是正弦交流激勵(lì),即為穩(wěn)態(tài)分量,即為暫態(tài)分量。穩(wěn)態(tài)分量可利用相量計(jì)算:

          式中 :

          暫態(tài)分量仍為,于是全解為:

          (式8-5-15)

          當(dāng)時(shí)刻,根據(jù)換路定則,確定積分常數(shù):

          由(式8-5-15):

          最終得到:

          (式8-5-16)

          (式8-5-17)

          (式8-5-18)

          (式8-5-16)~(式8-5-18)說(shuō)明電源的初相角對(duì)暫態(tài)分量的大小有影響,通常稱為接通角。當(dāng)時(shí),電容電壓的暫態(tài)分量為最大。從(式8-5-16)不難看出,電容過(guò)渡電壓的最大值無(wú)論如何不會(huì)超過(guò)穩(wěn)態(tài)電壓幅值的兩倍。但是從(式8-5-17)可以看出,在某些情況下,過(guò)渡電流的最大值將大大超過(guò)穩(wěn)態(tài)電流的幅值。

          2、RL串聯(lián)電路

          仍以圖8-5-3所示電路為例,將直流電壓源改為正弦交流電壓源,當(dāng)后,由KVL得到電路的微分方程為:

          (式8-5-19)

          初始條件仍是。如前所述,非齊次微分方程的全解是特解與通解之和,即:

          (式8-5-19)右邊是正弦函數(shù),特解也是正弦函數(shù),特解就是正弦交流激勵(lì)下的穩(wěn)態(tài)電流,可用相量求解:

          式中:

          ,

          (式8-5-20)

          暫態(tài)電流仍為:

          (式8-5-21)

          于是全解為:

          (式8-5-22)

          根據(jù)換路定則:

          由(式8-5-22):

          因而:

          最終得到:

          (式8-5-23)

          (式8-5-24)

          (式8-5-25)



          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();