AVR的鋰電池智能充電器的設(shè)計與實現(xiàn)
3.2 控制電路
單片機負(fù)責(zé)控制整個系統(tǒng)的運行,包括充電電流電壓值的設(shè)定,電流電壓的檢測與調(diào)整,充放電狀態(tài)的顯示等。與專用充電控制芯片相比,單片機控制系統(tǒng)不僅不受電池組容量大小的阻將電流轉(zhuǎn)換為電壓進行的,因此其PWM控制調(diào)整過程與恒限制,還可通過軟硬件配合實現(xiàn)更靈活的綜合控制,也便于進一步的后續(xù)開發(fā)。
系統(tǒng)控制選用Atmel公司的AVRATtiny261來實現(xiàn),控制框圖見圖2。ATtiny261采用AVR RISC結(jié)構(gòu),其大部分指令執(zhí)行時間僅為1個時鐘周期.可達到接近1MIPS/MHZ的性能;11路lObitADC。且15對具有可編程增益的ADC差分通道,精度高達2.5mV的內(nèi)置2.56V基準(zhǔn)源,3個獨立PWM發(fā)生器,片上溫度傳感器,足以滿足設(shè)計需求。
圖2系統(tǒng)控制結(jié)構(gòu)框圖
3.2.1 志愿檢測
系統(tǒng)電壓采樣采用精密電阻分壓方法,將測量電壓范圍轉(zhuǎn)換成0-2.56V,然后通過1倍的差分ADC通道轉(zhuǎn)換成數(shù)字信號,在充電過程中將測得的電壓值與預(yù)先設(shè)定的值進行比較,再控制調(diào)整PWM占空比完成對充電電壓的控制與調(diào)節(jié)。
3.2.2 電流檢測
在系統(tǒng)電流的榆測上,由于選用ATtiny261的ADC差分通道,這就要求其正端輸入電壓必須大予負(fù)端輸入電壓。困此,在電路設(shè)計上,通過串聯(lián)在電流主回路中的高精度采樣電阻RsenseB和RsenseA,經(jīng)ADC2-ADCl和ADCl-ADC0兩對32倍的ADC差分通道(參見圖3),分別完成對充、放電電流的檢測。可見,差分ADC的選用,既保證了電流采樣的精準(zhǔn),又避免了因電路中引入差分遠放所帶來的功率損耗問題,很好的滿足了系統(tǒng)性能與功耗兩方面的要求,充分體現(xiàn)了ATtiny261的優(yōu)勢。
圖3電池保護電路
3.2.3 溫度檢測
溫度檢測確保了安全充電步驟的執(zhí)行。系統(tǒng)中使用ATtiny261的毖上濕度傳感器,通過ADCIl進行溫度檢測。測量電壓與溫度基本成線性關(guān)系,約lmv/°C的精度可提供充分精度的溫度測量。如欲獲得更高精度的溫度檢測,可通過軟件寫入校準(zhǔn)值的方法來實現(xiàn)。
3.2.4 PWM控制
設(shè)計中,在前述穩(wěn)壓管反饋控制的摹礎(chǔ)上,在反饋環(huán)節(jié)中引入PWM的方法控制充電。其基本控制思想是利用單片機的PWM端口,在不改變PWM波周期的前提下,通過電流及電壓的反饋,用軟件的方法調(diào)整PWM占空比,從而使電流或電壓按預(yù)定的充電流程進行。
因系統(tǒng)進入充電工作狀態(tài)后,受鋰電池終止充電電壓的限制,其最高電壓不得高于12.7V,所以開關(guān)電源中的穩(wěn)壓管Zl始終處于截止?fàn)顟B(tài),充電過程完全由PWM的控制來實現(xiàn)。以恒壓充電為例,在充電電壓調(diào)整之前,單片機先快速讀取充電電壓檢測值,然后將設(shè)定的電壓值與實際讀取值進行比較,若實際電壓偏高,則提高PWM占空比,使線性光耦PC817的發(fā)光二極管的電流1F增大,致使TNY268的EN腳置為低電平,其片內(nèi)功率MOSFET關(guān)斷,輸出電壓降低。反之,則降低PWM占空比->IF減小->EN腳為高電平,片內(nèi)功率MOSFET接通,輸出電壓升高。在預(yù)充電,恒流充電階段對電流的調(diào)整,是通過采樣電阻將電流轉(zhuǎn)換為電壓進行的,因此其PWM控制調(diào)整過程與恒壓階段完全類似。當(dāng)充電結(jié)束時,PWM持續(xù)輸出占空比為1的高電平,關(guān)斷TNY268P的片內(nèi)MOSFET,中斷功率轉(zhuǎn)換回路,實現(xiàn)充滿后自動停充。
為保證采樣的準(zhǔn)確,盡量避免由于ADC的讀數(shù)偏差和電源工作電壓等引入的波紋干擾,所有采樣點都經(jīng)過阻容濾波處理,并在軟件PWM的調(diào)整過程中采用了數(shù)字濾波技術(shù)。
3.2.5 按鍵與顯示
充電器的功能按鍵響應(yīng)由ATtiny261的外中斷來實現(xiàn),與LED顯示相配合可獲知池放電狀況,并提醒系統(tǒng)即將終止。系統(tǒng)充放電的每個狀態(tài)都與相應(yīng)LED顯示對應(yīng)??筛鶕?jù)電壓檢測判斷是否有電池裝入及提供電池短路保護,并給出LED報警信號。
3.3保護電路
由于鋰電池的化學(xué)特性,在使用過程中,其內(nèi)部進行電能與化學(xué)能相互轉(zhuǎn)化的化學(xué)正反應(yīng)。但在菜蝗條件下.如對其過充電、過放電和過電流將會導(dǎo)致電池內(nèi)部發(fā)生化學(xué)副反應(yīng),該副反應(yīng)加劇則會嚴(yán)重影響鋰電池的性能與使用壽命,甚至?xí)鸨ǘ鴮?dǎo)致安全問題,因此鋰電池保護電路顯得至為重要。
如圖3所示,該電路選用精工的多節(jié)鋰電池保護芯片S8233構(gòu)成,可對電池電壓和回路電流進行有效監(jiān)測,并通過對MOS管FET-A或FET-B的控制在某些條件下關(guān)斷究、放電回路以防止對電池發(fā)生損害。與其它電池保護芯片如S8254相比較,S8233還可通過外接MOS管FET1,F(xiàn)ET1及FET3來保證鋰電池組的充電平衡,這是其它類似芯片所不具備的優(yōu)點。通過單片機對S8233芯片CTL端子的控制,可實現(xiàn)對鋰電池的故障保護。
評論