基于ARM內(nèi)核目標系統(tǒng)中的代碼運行時間測試
然而很多應用涉及μs級的時間計量,這是標準化了的RTC以及基于它的時間函數(shù)所無能為力的。筆者在移植DES算法到ARM系統(tǒng)的實驗過程中,便遇到過要定量評估加密算法耗時多少的問題,發(fā)現(xiàn)的確不能用上述常規(guī)的C函數(shù)解決。經(jīng)對ARM芯片結構的考察,發(fā)現(xiàn)其內(nèi)置的WatchDog系統(tǒng)是以系統(tǒng)時鐘驅(qū)動的,定量性能應該很好,區(qū)分時間間隔的精細程度也應該足夠。于是根據(jù)所用ARM芯片的原廠家數(shù)據(jù)手冊中的說明,借用 WatchDog編寫了自己的計時函數(shù),使用起來也比較方便??紤]到ARM芯片都帶有內(nèi)置看門狗,筆者覺得這種方法可算是一個不錯的“過渡性”解決方案,故在此加以介紹,供同行們參考并指正。
1、測量原理
ARM芯片中的看門狗,其原始功能是監(jiān)視CPU核心運行的某些超時。這些超時的發(fā)生,通常是因為干擾和系統(tǒng)錯誤等造成的程序運行混亂。一旦發(fā)生這類情形,看門狗便請求中斷服務或發(fā)出復位脈沖重啟系統(tǒng)。為了達到這樣的目的,其計時原理必須獨立于系統(tǒng)中的任何進程。實際上,WatchDog是獨立的硬件邏輯,其計時脈沖直接取自系統(tǒng)主時鐘,因此它與RTC一樣具備實時性和獨立性,借用看門狗的計時體系來實現(xiàn)高精度時間測量是合理的。
先以實驗中用到的S3C44B0X為例(該實驗所用的ARM開發(fā)板型號為NETARM300),具體談談看門狗的工作原理。
系統(tǒng)主時鐘MCLK經(jīng)過可編程預分頻、可選固定分頻后,進入WTCNT(硬件系統(tǒng)的計時計數(shù)器,16位)計數(shù)。根據(jù)器件手冊,計數(shù)時間間隔t_watchdog=1/(MCLK/(Prescaler value+1)/Division_factor )。式中,參數(shù)Prescaler value的取值為0~28-1;Division_factor有16、32、64、128四種取值。如果復位信號輸出允許(即WTCON的位0置1),那么一旦計數(shù)器WTCNT的計數(shù)超過WTDAT允許的范圍,看門狗就會將CPU復位。本實驗過程中屏蔽掉了這種復位和中斷請求功能,僅讓它對脈沖計數(shù)。
控制寄存器WTCON的有關各位定義圖中已給出(如需詳細解釋可查閱器件手冊,如參考文獻[3]),其他全為保留位,可全置為0。
至于MCLK具體值的計算,可以查驗系統(tǒng)中的晶振參數(shù)(頻率),讀取系統(tǒng)時鐘的PLL寄存器(如S3C44B0X的PLLCON)后算得。計算的方法都已在具體ARM芯片手冊中給出。
2、測量算法實現(xiàn)和實驗結果
按照所需參數(shù)設置的看門狗定時器控制寄存器WTCON的值(如前所述),在待測代碼段執(zhí)行之前開啟看門狗定時器;等其執(zhí)行完畢則關閉看門狗定時器,讀取WTCNT的值即可算得運行時間。作為一個具體示例,筆者實驗中所實現(xiàn)的算法如下:
(1) 計時算法
void my_CountStart() {
rWTCON=((MCLK/1000000-1)8)|(23); //1 MHz/64,Watchdog,nRESET,中斷禁止
rWTDAT=0xffff;
rWTCNT=0xffff;
rWTCON=((MCLK/1000000-1)8)|(23)|(15); //計時開始
}
評論