<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          LED散熱分析

          作者: 時(shí)間:2012-12-31 來源:網(wǎng)絡(luò) 收藏
            的散熱現(xiàn)在越來越為人們所重視,這是因?yàn)?a class="contentlabel" href="http://www.ex-cimer.com/news/listbylabel/label/LED">LED的光衰或其壽命是直接和其結(jié)溫有關(guān),散熱不好結(jié)溫就高,壽命就短,依照阿雷紐斯法則溫度每降低10℃壽命會(huì)延長(zhǎng)2倍。從Cree公司發(fā)布的光衰和結(jié)溫的關(guān)系圖(圖1)中可以看出,結(jié)溫假如能夠控制在65°C,那么其光衰至70%的壽命可以高達(dá)10萬小時(shí)!這是人們夢(mèng)寐以求的壽命,可是真的可以實(shí)現(xiàn)嗎?是的,只要能夠認(rèn)真地處理它的散熱問題就有可能做到!遺憾的是,現(xiàn)在實(shí)際的燈的散熱和這個(gè)要求相去甚遠(yuǎn)!以致LED燈具的壽命變成了一個(gè)影響其性能的主要問題,所以必須要認(rèn)真對(duì)待!

            

          LED散熱分析

            圖1.光衰和結(jié)溫的關(guān)系

            而且,結(jié)溫不但影響長(zhǎng)時(shí)間壽命,也還直接影響短時(shí)間的發(fā)光效率,例如Cree公司的XLamp7090XR-E的發(fā)光量和結(jié)溫的關(guān)系如圖2所示。

            

          LED散熱分析

            假如以結(jié)溫為25度時(shí)的發(fā)光為100%,那么結(jié)溫上升至60度時(shí),其發(fā)光量就只有90%;結(jié)溫為100度時(shí)就下降到80%;140度就只有70%??梢姼纳粕幔刂平Y(jié)溫是十分重要的事。

            除此以外LED的發(fā)熱還會(huì)使得其光譜移動(dòng);色溫升高;正向電流增大(恒壓供電時(shí));反向電流也增大;熱應(yīng)力增高;熒光粉環(huán)氧樹脂老化加速等等種種問題,所以說,LED的散熱是LED燈具的設(shè)計(jì)中最為重要的一個(gè)問題。

            第一部分LED芯片的散熱

            一.結(jié)溫是怎么產(chǎn)生的

            LED發(fā)熱的原因是因?yàn)樗尤氲碾娔懿]有全部轉(zhuǎn)化為光能,而是一部分轉(zhuǎn)化成為熱能。LED的光效目前只有100lm/W,其電光轉(zhuǎn)換效率大約只有20~30%左右。也就是說大約70%的電能都變成了熱能。

            具體來說,LED結(jié)溫的產(chǎn)生是由于兩個(gè)因素所引起的。

            1.內(nèi)部量子效率不高,也就是在電子和空穴復(fù)合時(shí),并不能100%都產(chǎn)生光子,通常稱為由“電流泄漏”而使PN區(qū)載流子的復(fù)合率降低。泄漏電流乘以電壓就是這部分的功率,也就是轉(zhuǎn)化為熱能,但這部分不占主要成分,因?yàn)楝F(xiàn)在內(nèi)部光子效率已經(jīng)接近90%。

            2.內(nèi)部產(chǎn)生的光子無法全部射出到芯片外部而最后轉(zhuǎn)化為熱量,這部分是主要的,因?yàn)槟壳斑@種稱為外部量子效率只有30%左右,大部分都轉(zhuǎn)化為熱量了。

            雖然白熾燈的光效很低,只有15lm/W左右,但是它幾乎將所有的電能都轉(zhuǎn)化為光能而輻射出去,因?yàn)榇蟛糠值妮椛淠苁羌t外線,所以光效很低,但是卻免除了散熱的問題。

            二.LED芯片到底板的散熱

            LED芯片的特點(diǎn)是在極小的體積內(nèi)產(chǎn)生極高的熱量。而LED本身的熱容量很小,所以必須以最快的速度把這些熱量傳導(dǎo)出去,否則就會(huì)產(chǎn)生很高的結(jié)溫。為了盡可能地把熱量引出到芯片外面,人們?cè)贚ED的芯片結(jié)構(gòu)上進(jìn)行了很多改進(jìn)。

            為了改善LED芯片本身的散熱,其最主要的改進(jìn)就是采用導(dǎo)熱更好的襯底材料。早期的LED只是采用Si硅作為襯底。后來就改為藍(lán)寶石作為襯底。但是藍(lán)寶石襯底的導(dǎo)熱性能不是太好,(在100°C時(shí)約為25W/(m-K)),為了改善襯底的散熱,Cree公司采用碳化硅硅襯底,它的導(dǎo)熱性能(490W/(m-K))要比藍(lán)寶石高將近20倍。而且藍(lán)寶石要使用銀膠固晶,而銀膠的導(dǎo)熱也很差。而碳化硅的唯一缺點(diǎn)是成本比較貴。目前只有Cree公司生產(chǎn)以碳化硅為襯底的LED。

            

          LED散熱分析

            圖3.藍(lán)寶石和碳化硅襯底的LED結(jié)構(gòu)圖

            采用碳化硅作為基底以后,的確可以大為改善其散熱,但是其成本過高,而且有專利保護(hù)。最近國(guó)內(nèi)的廠商開始采用硅材料作為基底。因?yàn)楣璨牧系幕撞皇軐@南拗啤6倚阅苓€優(yōu)于藍(lán)寶石。唯一的問題是GaN的膨脹系數(shù)和硅相差太大而容易發(fā)生龜裂,解決的方法是在中間加一層氮化鋁(AlN)作緩沖。

            襯底材料導(dǎo)熱系數(shù) W/(m·K)膨脹系數(shù) (x10E-6)穩(wěn)定性導(dǎo)熱性成本ESD (抗靜電)

            碳化硅(SiC)490-1.4良好高好

            藍(lán)寶石(Al2O3)461.9一般差為SiC的1/10一般

            硅(Si)1505~20良好為藍(lán)寶石的1/10好

            LED芯片封裝以后,從芯片到管腳的熱阻就是在應(yīng)用時(shí)最重要的一個(gè)熱阻,一般來說,芯片的接面面積的大小是散熱的關(guān)鍵,對(duì)于不同的額定功率,要求有相應(yīng)大小的接面面積。也就表現(xiàn)為不同的熱阻。幾種類型的LED的熱阻如下所示:

            類型草帽管食人魚1W面發(fā)光

            熱阻 oK/W150-200508-155

            早期的LED芯片主要靠?jī)筛饘匐姌O而引出到芯片外部,最典型的就是稱為ф5或F5的草帽管,它的散熱完全靠?jī)筛?xì)細(xì)的金屬導(dǎo)線引出去,所以散熱效果很差,熱阻很大,這也就是為什么這種草帽管的光衰很嚴(yán)重的原因。此外,封裝時(shí)采用的材料也是一個(gè)很重要的問題。小功率LED通常采用環(huán)氧樹脂作為封裝材料,但是環(huán)氧樹脂對(duì)400-459nm的光線吸收率高達(dá)45%,很容易由于長(zhǎng)期吸收這種短波長(zhǎng)光線以后產(chǎn)生的老化而使光衰嚴(yán)重,50%光衰的壽命不到1萬小時(shí)。因而在大功率LED中必須采用硅膠作為封裝材料。硅膠對(duì)同樣波長(zhǎng)光線的吸收率不到1%。從而可以把同樣光衰的壽命延長(zhǎng)到4萬小時(shí)。

            下面列出各家LED芯片公司所生產(chǎn)的各種型號(hào)LED的熱阻

            公司名稱芯片型號(hào)芯片類型熱阻 °C/W

            億光EHP53931W冷白13

            億光EHP-A08L/UT011W,5600K15

            愛迪生Edixeon S series1W,5K-8K13-14

            愛迪生Edixeon K series1W,8

            LumenledLuxeon Emitter1W,4.5K-5.5K15

            NichiaNJSL036AT1W,30

            CreeXLamp7090XR-E1W8

            CreeXLampXP-G1W6

            光寶(Lite-On)LTW-M670ZVS(3020)0.07W,20mA160

            琉明斯30140.1W,30mA45

            由表中可見,Cree公司的LED的熱阻因?yàn)椴捎昧颂蓟枳骰?,要比其他公司的熱阻至少低一倍。大功率LED為了改進(jìn)散熱通常在基底下面再放一塊可焊接的銅底板以便焊到散熱器上去。這些熱阻實(shí)際上都是在這個(gè)銅底板上測(cè)得的。

            是不是碳化硅就是LED襯底的最佳選擇呢,不是這樣,任何事物都會(huì)有創(chuàng)新和發(fā)展的,最近臺(tái)灣的鉆石科技開發(fā)出了鉆石島外延片(DiamondIslandsWafer,DIW)做為生產(chǎn)超級(jí)LED的基材。這種LED的熱阻可以低至5°C/W。用它制成的超級(jí)LED可發(fā)出極強(qiáng)的紫外光,其強(qiáng)度不因高溫而降低,反而會(huì)更亮。其結(jié)構(gòu)圖如圖4所示。

            

          LED散熱分析

            圖4.采用類鉆碳(DiamondLikeCarbon,DLC)的鍍膜可以大大改善LED的散熱

            

          LED散熱分析

            圖5.用DLC鍍膜和鋁結(jié)合可以比其它結(jié)構(gòu)的LED有更好的散熱特性

            而且采用紫外線來激發(fā)各種熒光粉也可以得到所需要的各種顏色的LED。而且熒光粉不是采用和環(huán)氧樹脂或硅膠混合的方法而是直接涂于芯片表面還可以避免由于環(huán)氧樹脂和硅膠的老化而產(chǎn)生的光衰。

            這將會(huì)使整個(gè)LED產(chǎn)生革命性變化。而且擺脫了日美等國(guó)的專利束縛。

            三.集成LED的散熱

            現(xiàn)在有不少?gòu)S商把很多LED晶粒集成在一起以得到大功率的LED。這種LED的功率可以達(dá)到5W以上,大多以10W,25W,和50W的功率等級(jí)出現(xiàn)。為了把多個(gè)LED晶粒(以共晶(Eutectic)或覆晶(Flip-Chip)封裝)連接在一起,因?yàn)檫@些晶粒極為精細(xì),所以需要采用精確的印制電路進(jìn)行連接。為了得到更好的散熱特性,通常采用陶瓷基板。這種陶瓷基板是由氧化鋁和氮化鋁構(gòu)成。各種材料的導(dǎo)熱系數(shù)如下表所示。

            材料導(dǎo)熱系數(shù) W/mK

            FR4 (普通印制板的玻璃纖維)0.2

            氧化鋁17-27

            氮化鋁170-230

            金315

            銀425

            銅398

            不論氮化鋁還是氧化鋁,它們都是一種絕緣的陶瓷材料,所以可以把印制電路做在上面。但是氮化鋁具有高10倍的導(dǎo)熱系數(shù),所以現(xiàn)在更常用氮化鋁。過去采用厚膜電路,但是其表面不平,電路邊緣毛糙,而且需要800°C以上的燒結(jié)溫度。現(xiàn)在大多采用薄膜電路,因?yàn)樗恍枰?00度以下的工藝,表面平整度可以0.3um,不會(huì)有氧化物生成,附著性好,電路精細(xì),誤差低于+/-1%。它實(shí)際上是采用照相刻蝕的方法來制作,采用氧化鋁為基底的薄膜電路制備的具體過程如下:

            

          LED散熱分析

            圖6.薄膜電路的制備過程

            采用氮化鋁的制作方法相同。

            第二部分LED燈具的散熱

            前面講的是LED芯片的散熱,然而


          上一頁(yè) 1 2 3 4 下一頁(yè)

          關(guān)鍵詞: LED 散熱分析

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();