<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 工程師技術(shù)分享:基于BUCK調(diào)壓的小功率高壓電源

          工程師技術(shù)分享:基于BUCK調(diào)壓的小功率高壓電源

          作者: 時(shí)間:2014-01-24 來(lái)源:網(wǎng)絡(luò) 收藏

          研究主要內(nèi)容包括BUCK電路的分析設(shè)計(jì)、半橋逆變電路分析設(shè)計(jì)、倍壓電路的設(shè)計(jì),控制電路的設(shè)計(jì),并利用PSPICE軟件進(jìn)行相應(yīng)各部分的仿真和參數(shù)優(yōu)化。

          本文引用地址:http://www.ex-cimer.com/article/226653.htm

          本研究實(shí)現(xiàn)的主要性能是:給定輸入電壓是交流220V,要求輸出電壓在范圍0~15KV內(nèi)大范圍可調(diào),功率為15W,輸出紋波要小于1%。

          引言

          一般是指輸出電壓在五千伏特以上的電源,一般的輸出電壓可達(dá)幾萬(wàn)伏,甚至高達(dá)幾十萬(wàn)伏特或更高。廣泛應(yīng)用于材料改性,金屬冶煉,環(huán)境保護(hù),大功率激光和微波等應(yīng)用領(lǐng)域。傳統(tǒng)高壓電源采用工頻電源和LC諧振方式,雖然電路簡(jiǎn)單,但其體積和重量大,低頻工作狀態(tài)以及紋波、穩(wěn)定性均不能令人滿意,隨著電力電子的發(fā)展,高頻高壓電源成為發(fā)展的趨勢(shì)。

          隨著新的電子元器件、新的電磁材料、新的電源變換技術(shù)、新的控制理論及新的專(zhuān)業(yè)軟件的不斷涌現(xiàn),并不斷地被應(yīng)用于開(kāi)關(guān)電源,使得開(kāi)關(guān)電源的性能不斷提高,特點(diǎn)不斷更新,出現(xiàn)了如頻率高、效率高、功率密度高、可靠性高等新特性。

          20世紀(jì)70年代世界電源史上發(fā)生了一場(chǎng)革命,即20Hz的開(kāi)關(guān)頻率結(jié)合脈寬調(diào)制技術(shù)(PWM)在電源領(lǐng)域的應(yīng)用。到目前為止,電源的頻率已經(jīng)達(dá)到數(shù)百 Hz,應(yīng)用先進(jìn)的準(zhǔn)諧振技術(shù)甚至可以達(dá)到兆Hz水平。提高振蕩器輸出頻率可降低高壓變壓器、電抗器、平滑電容器、高壓電容器等電子器件基本性能要求和結(jié)構(gòu)體積,進(jìn)而縮小高壓電源體積。高頻化使高壓電源體積大幅度的減小,輕巧便攜,實(shí)用性和使用方便性明顯得到改善。

          近幾年,隨著電子電力技術(shù)的發(fā)展,新一代功率器件,如MOSFET,IGBT等應(yīng)用,高頻逆變技術(shù)的逐步成熟,出現(xiàn)了高壓開(kāi)關(guān)直流電源,同線性電源相比較高頻開(kāi)關(guān)電源的突出特點(diǎn)是:效率高、體積小、重量輕、反應(yīng)快、儲(chǔ)能少、設(shè)計(jì)、制造周期短。由于它的優(yōu)越特性,現(xiàn)在已逐漸取代了傳統(tǒng)的高壓線性直流電源。

          伴隨著高新技術(shù)的逐步應(yīng)用,新的技術(shù)問(wèn)題也隨之出現(xiàn),主要表現(xiàn)在高頻化可以提高電源性能,減少變壓器的體積和紋波系數(shù)。但由于高頻高壓變壓器是高頻高壓并存,出現(xiàn)了新的技術(shù)難點(diǎn):

          ①高頻高壓變壓器體積減小,頻率升高,分布容抗變小,絕緣問(wèn)題異常突出;

          ②大的電壓變化比使變壓器的非線性嚴(yán)重化,漏感和分布電容都增加,使其必須與逆變開(kāi)關(guān)隔離,否則尖峰脈沖會(huì)影響到逆變電路的正常工作,甚至?xí)舸┕β势骷?

          ③高頻化導(dǎo)致變壓器的趨膚效應(yīng)增強(qiáng),使變壓器效率降低。

          鑒于上述情況,高頻高壓變壓器如何設(shè)計(jì)是目前研究的一個(gè)難點(diǎn)和熱點(diǎn)問(wèn)題。

          研究主要內(nèi)容包括BUCK電路的分析設(shè)計(jì)、半橋逆變電路分析設(shè)計(jì)、倍壓電路的設(shè)計(jì),以及系統(tǒng)仿真研究。該電路包括輸入整流濾波電路、BUCK預(yù)穩(wěn)壓電路、半橋逆變電路、倍壓電路和輸出整流濾波電路。輸入的交流電源經(jīng)整流濾波電路變?yōu)橹绷?,通過(guò)BUCK預(yù)穩(wěn)壓電路將電壓穩(wěn)定,再經(jīng)過(guò)半橋逆變電路將直流電壓變?yōu)榻涣麟妷?,然后通過(guò)一個(gè)倍壓電路將電壓升高,最后整流濾波輸出穩(wěn)定高壓。主電路設(shè)計(jì)

          1)主電路的拓?fù)浣Y(jié)構(gòu)(圖1)

          工程師技術(shù)分享:基于BUCK調(diào)壓的小功率高壓電源

          這里主要介紹了一種基于高壓電源。該電源能實(shí)現(xiàn)零電流軟開(kāi)關(guān) (ZCS),并能方便的調(diào)節(jié)輸出電壓,因?yàn)槔昧烁哳l變壓器的寄生參數(shù),從而避免了尖峰電壓和電流。該電源的另一個(gè)特點(diǎn)是利用倍壓電路代替了傳統(tǒng)的二極管整流電路,減小了高頻變壓器的變比和寄生參數(shù);尤其是主電路的控制采用了Buck電路和逆變電路的聯(lián)合策略,即采用Buck可十分方便、靈活地進(jìn)行電壓調(diào)節(jié);采用定頻定寬的逆變電路可利用高頻變壓器的寄生參數(shù)實(shí)現(xiàn)諧振軟開(kāi)關(guān)。

          此外,由于該電源無(wú)需利用調(diào)節(jié)逆變電路的占空比來(lái)調(diào)節(jié)電壓,因而可充分利用高頻變壓器的磁性;而且由于其控制電路采用了基于DSP的實(shí)時(shí)數(shù)字PI調(diào)解器,因而實(shí)現(xiàn)了電路的穩(wěn)態(tài)和暫態(tài)特性。

          2) BUCK電路的設(shè)計(jì)

          (1)BUCK電路工作原理,圖2。

          當(dāng)開(kāi)關(guān)S閉合后,輸入電壓 完全加在二極管D的兩端,上正下負(fù),二極管被反偏截止。由于此時(shí)電容C的初始電壓為零(Vc=Vo 輸出電壓為零),電容電壓不能突變,所以輸入電壓完全加在電感L之上,形成經(jīng)開(kāi)關(guān)S、電感L、電容C和電阻R構(gòu)成的回路建立起初始電流。隨著開(kāi)關(guān)閉合時(shí)間的增加,電感電流逐漸增大,這個(gè)電感電流中的一部分供給電阻R成為輸出電流,另一部分對(duì)電容充電使電容兩端的電壓逐步上升。由于電容電壓從零開(kāi)始建立,在開(kāi)關(guān)S閉合期間電感電流的增量相對(duì)較大,而輸出給R的負(fù)載電流與電容電壓成正比,故開(kāi)始階段電容的充電電流最大,電容電壓上升得最快。

          倍壓整流電路相關(guān)文章:倍壓整流電路原理


          電抗器相關(guān)文章:電抗器原理
          脈寬調(diào)制相關(guān)文章:脈寬調(diào)制原理
          激光二極管相關(guān)文章:激光二極管原理

          上一頁(yè) 1 2 3 4 5 下一頁(yè)

          評(píng)論


          相關(guān)推薦

          技術(shù)專(zhuān)區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();