鋰離子電池管理芯片的研究及其低功耗設計案例
②應該盡可能地降低功耗以延長供電電池的使用壽命。作為封裝后電池的一部分,芯片的驅動始終來自被管理的電池,因此要求芯片要有足夠低的電流消耗。
作為一個數(shù)?;旌闲盘栯娐?,可以借鑒已有的一些功耗優(yōu)化方法,但是結合應用特點降低功耗,還要進行更深入的理論探索。
因此,研究以單節(jié)鋰離子保護電路為代表的電池管理芯片的低功耗,從系統(tǒng)功能實現(xiàn)到數(shù)模混合信號電路低功耗的設計,對電池管理芯片的設計乃至SBS的開發(fā)都將有相當?shù)慕梃b作用。
1.2數(shù)?;旌闲盘栯娐返牡凸脑O計
1.2.1集成電路的低功耗設計動因
在集成電路發(fā)展的早期到上世紀八十年代,功耗問題并不是很突出。在這段時間內,由于電路系統(tǒng)規(guī)模普遍較小和CMOS工藝的興起,低功耗尚未被作為IC設計的重要因素。
在1968年,Intel公司的創(chuàng)始人之一G. Moore就預測,每18到24個月,IC的集成度將提高一倍,這就是著名的Moore定律。而事實上,這四十多年來,IC技術就是基本上遵循著Moore定律取得了巨大的發(fā)展。集成電路經歷了從小規(guī)模集成(SSI)發(fā)展到超大規(guī)模(VLSI)到現(xiàn)在的甚大規(guī)模集成(ULSI),即一個芯片上可以包含一億以上的元件的水平。雖然量子效應和經濟的限制將使IC集成度增長的速度趨緩,但是可以預見的是,隨著新技術的采用IC的集成度持續(xù)發(fā)展的勢頭將不會改變。同時,系統(tǒng)的復雜度也在不斷地提高,即將不同功能的器件和電路都集成到一個芯片上,構成一個系統(tǒng)集成芯片(SOC)。顯然,集成電路復雜度和集成度的提高使得低功耗正成為一個不可或缺的電路設計指標。
首先,過高的功耗將使芯片容易過熱,電路可靠性下降,最終導致失效。有研究表明,溫度每升高10 C,器件的故障率將提高兩倍;另外,不斷增高的功耗將給芯片的封裝和散熱提出了更高的要求,這不僅會增加成本,而且在小型化應用場合中,這種方案往往不被采納。
更重要的是,消費類電子產品的發(fā)展和大量應用推動了對功耗問題的研究。
低功耗的概念是由電子手表等工業(yè)首次提出的,而在小型化、高集成度的消費類電子產品中,為了降低電路成本、提高電路穩(wěn)定性、可靠性,更需要設計低功耗電路,以保證在集成度提高時,單位面積維持同樣甚至更低的功耗。同時,因為在過去的三十年中電池的容量僅僅增加了2~4倍,遠沒有VLSI技術的發(fā)展迅速,所以在電池供電系統(tǒng)中,集成電路的低功耗設計是延長電池使用壽命的最有效手段。此外,便攜式設備趨于使用更少的電池,以減小尺寸和重量,也必然要求電路實現(xiàn)低功耗。和十年前相比,消費類電子產品在電子產業(yè)中的比例已從40%快速增長到55%,因此可以說消費類電子產品是低功耗設計的主要推動力。1.2.2數(shù)?;旌闲盘栯娐返牡凸难芯?/strong>
在這種技術需求和便攜式電子產品的應用需求的強烈推動下,CMOS集成電路低壓低功耗設計受到了人們的極大重視。目前,人們對集成電路的功耗研究,主要集中在以下兩個方面:
一是低功耗工藝的研究。這主要集中在減小特征尺寸、降低電源電壓和降低閾值電壓方面。減小特征尺寸,有助于將復雜系統(tǒng)集成在同一芯片上,進行有效地功耗管理。但是當特征尺寸縮小到一定程度,熱載流子效應、動態(tài)節(jié)點的軟失效將極大地影響著器件的性能,降低電源電壓成為解決上述問題的較好方案。為了保證低壓邏輯電路的驅動電流不減少和工作頻率不降低,在降低電源電壓的同時也要求降低閾值電壓,但是同比例降低閾值電壓會使漏泄電流指數(shù)級增加。采用多閾值電壓器件或是采用可變閾值電壓技術有望減小漏泄電流引起的功耗,而這些技術都比較依賴制造工藝。
二是低功耗設計方法的研究。這是目前低功耗研究中最為活躍的領域。在工藝確定的情況下,它包括低功耗的設計方法及評估方法,但主要是針對數(shù)字電路。
在保證系統(tǒng)同樣性能的前提下,在芯片設計的初期,就從各個層次對功耗進行分析優(yōu)化,不僅能夠縮短設計周期,還能夠實現(xiàn)整體功耗最小化目標。從設計的角度,低功耗設計方法可以分成系統(tǒng)級(System Level)、算法/結構(Architecture/Algorithm Level)、寄存器傳輸級(Register Transfer Level, RTL)、邏輯/門級(Logic/Gate Level)、版圖級(Layout Level)這幾個層次。其中,系統(tǒng)及算法作為低功耗技術中的高層次,對系統(tǒng)功耗的影響很大。在這種層次上的功耗分析將能對系統(tǒng)功耗進行預測及優(yōu)化,并能實現(xiàn)幾個數(shù)量級的功耗降低,因此必須加以重視。
有效的功耗評估工具和方法是低功耗研究的另一個重要內容。如何在設計的不同層次對電路功耗進行快速準確地估計,也是集成電路設計中的一個熱點和難點問題。通常,把功耗評估分為基于隨機統(tǒng)計和模擬的方法這兩類。
基于隨機統(tǒng)計的功耗估算方法,其基本思想為:先根據(jù)模塊的版圖或邏輯描述,抽取電路或邏輯模型,然后用隨機產生的輸入流模擬,計算平均功耗。
它的優(yōu)點是速度較快,而且不需要電路內部信息,但功耗估算準確程度不及基于模擬的方法,因此適用于通常設計的早期階段。
基于模擬的功耗估算方法是用一組典型的輸入矢量進行功耗模擬,以獲得平均功耗、最大功耗及最小功耗值?;谀M的方法精度高,但所占存儲空間和模擬時間較大,因此可以用一些啟發(fā)信息來加速收斂,如蒙特卡羅(Monte Carlo)
模擬方法和遺傳算法。其中,蒙特卡羅方
評論