<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          作者: 時(shí)間:2013-11-03 來源:網(wǎng)絡(luò) 收藏

          本文詳細(xì)介紹了開關(guān)電源(SMPS)中各個(gè)元器件損耗的計(jì)算和預(yù)測技術(shù),并討論了提高開關(guān)調(diào)節(jié)器效率的相關(guān)技術(shù)和特點(diǎn),以選擇最合適的芯片來達(dá)到高效指標(biāo)。本文介紹了影響開關(guān)電源效率的基本因素,可以以此作為新設(shè)計(jì)的準(zhǔn)則。我們將從一般性介紹開始,然后針對特定的開關(guān)元件的損耗進(jìn)行討論。

          本文引用地址:http://www.ex-cimer.com/article/228017.htm

          一、效率估計(jì)

          能量轉(zhuǎn)換系統(tǒng)必定存在能耗,雖然實(shí)際應(yīng)用中無法獲得100%的轉(zhuǎn)換效率,但是,一個(gè)高質(zhì)量的電源效率可以達(dá)到非常高的水平,效率接近95%.

          絕大多數(shù)電源IC的工作效率可以在特定的工作條件下測得,數(shù)據(jù)資料中給出了這些參數(shù)。Maxim的數(shù)據(jù)資料給出了實(shí)際測試得到的數(shù)據(jù),其他廠商也會(huì)給出實(shí)際測量的結(jié)果,但我們只能對我們自己的數(shù)據(jù)擔(dān)保。圖1給出了一個(gè)SMPS降壓轉(zhuǎn)換器的電路實(shí)例,轉(zhuǎn)換效率可以達(dá)到97%,即使在輕載時(shí)也能保持較高效率。

          采用什么秘訣才能達(dá)到如此高的效率?我們最好從了解SMPS損耗的公共問題開始,開關(guān)電源的損耗大部分來自開關(guān)器件(MOSFET和二極管),另外小部分損耗來自電感和電容。但是,如果使用非常廉價(jià)的電感和電容(具有較高電阻),將會(huì)導(dǎo)致?lián)p耗明顯增大。

          選擇IC時(shí),需要考慮控制器的架構(gòu)和內(nèi)部元件,以期獲得高效指標(biāo)。例如,圖1采用了多種方法來降低損耗,其中包括:同步整流,芯片內(nèi)部集成低導(dǎo)通電阻的MOSFET,低靜態(tài)電流和跳脈沖控制模式。我們將在本文展開討論這些措施帶來的好處。

          淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          圖1. MAX1556降壓轉(zhuǎn)換器集成了低導(dǎo)通電阻的MOSFET,采用同步整流,可以達(dá)到95%的轉(zhuǎn)換效率,效率曲線如圖所示。

          二、降壓型SMPS

          損耗是任何SMPS架構(gòu)都面臨的問題,我們在此以圖2所示降壓型(或buck)轉(zhuǎn)換器為例進(jìn)行討論,圖中標(biāo)明各點(diǎn)的開關(guān)波形,用于后續(xù)計(jì)算。

          淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          圖2. 通用降壓型SMPS電路和相關(guān)波形,對于理解SMPS架構(gòu)提供了一個(gè)很好的參考實(shí)例。

          降壓轉(zhuǎn)換器的主要功能是把一個(gè)較高的直流輸入電壓轉(zhuǎn)換成較低的直流輸出電壓。為了達(dá)到這個(gè)要求,MOSFET以固定頻率(fS),在脈寬調(diào)制信號(PWM)的控制下進(jìn)行開、關(guān)操作。當(dāng)MOSFET導(dǎo)通時(shí),輸入電壓給電感和電容(L和COUT)充電,通過它們把能量傳遞給負(fù)載。在此期間,電感電流線性上升,電流回路如圖2中的回路1所示。 當(dāng)MOSFET斷開時(shí),輸入電壓斷開與電感的連接,電感和輸出電容為負(fù)載供電。電感電流線性下降,電流流過二極管,電流回路如圖中的環(huán)路2所示。MOSFET的導(dǎo)通時(shí)間定義為PWM信號的占空比(D)。D把每個(gè)開關(guān)周期分成[D × tS]和[(1 - D) × tS]兩部分,它們分別對應(yīng)于MOSFET的導(dǎo)通時(shí)間(環(huán)路1)和二極管的導(dǎo)通時(shí)間(環(huán)路2)。所有SMPS拓?fù)?降壓、反相等)都采用這種方式劃分開關(guān)周期,實(shí)現(xiàn)電壓轉(zhuǎn)換。 對于降壓轉(zhuǎn)換電路,較大的占空比將向負(fù)載傳輸較多的能量,平均輸出電壓增加。相反,占空比較低時(shí),平均輸出電壓也會(huì)降低。根據(jù)這個(gè)關(guān)系,可以得到以下理想情況下(不考慮二極管或MOSFET的壓降)降壓型SMPS的轉(zhuǎn)換公式: VOUT = D × VIN IIN = D × IOUT 需要注意的是,任何SMPS在一個(gè)開關(guān)周期內(nèi)處于某個(gè)狀態(tài)的時(shí)間越長,那么它在這個(gè)狀態(tài)所造成的損耗也越大。對于降壓型轉(zhuǎn)換器,D越低(相應(yīng)的VOUT越低),回路2產(chǎn)生的損耗也大。

          1、開關(guān)器件的損耗 MOSFET傳導(dǎo)損耗

          淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          圖3. 典型的降壓型轉(zhuǎn)換器的MOSFET電流波形,用于估算MOSFET的傳導(dǎo)損耗?下式給出了更準(zhǔn)確的估算損耗的方法,利用IP和IV之間電流波形I2的積分替代簡單的I2項(xiàng)? PCOND(MOSFET) = [(IP3 - IV3)/3] × RDS(ON) × D = [(IP3 - IV3)/3] × RDS(ON) × VOUT/VIN 式中,IP和IV分別對應(yīng)于電流波形的峰值和谷值,如圖3所示?MOSFET電流從IV線性上升到IP,例如:如果IV為0.25A,IP為1.75A,RDS(ON)為0.1Ω,VOUT為VIN/2 (D = 0.5),基于平均電流(1A)的計(jì)算結(jié)果為: PCOND(MOSFET) (使用平均電流) = 12 × 0.1 × 0.5 = 0.050W.

          利用波形積分進(jìn)行更準(zhǔn)確的計(jì)算: PCOND(MOSFET) (使用電流波形積分進(jìn)行計(jì)算) = [(1.753 - 0.253)/3] × 0.1 × 0.5 = 0.089W 或近似為78%,高于按照平均電流計(jì)算得到的結(jié)果?對于峰均比較小的電流波形,兩種計(jì)算結(jié)果的差別很小,利用平均電流計(jì)算即可滿足要求?

          2、二極管傳導(dǎo)損耗

          MOSFET的傳導(dǎo)損耗與RDS(ON)成正比,二極管的傳導(dǎo)損耗則在很大程度上取決于正向?qū)妷?VF)。二極管通常比MOSFET損耗更大,二極管損耗與正向電流、VF和導(dǎo)通時(shí)間成正比。由于MOSFET斷開時(shí)二極管導(dǎo)通,二極管的傳導(dǎo)損耗(PCOND(DIODE))近似為: PCOND(DIODE) = IDIODE(ON) × VF × (1 - D) 式中,IDIODE(ON)為二極管導(dǎo)通期間的平均電流。圖2所示,二極管導(dǎo)通期間的平均電流為IOUT,因此,對于降壓型轉(zhuǎn)換器,PCOND(DIODE)可以按照下式估算: PCOND(DIODE) = IOUT × VF × (1 - VOUT/VIN) 與MOSFET功耗計(jì)算不同,采用平均電流即可得到比較準(zhǔn)確的功耗計(jì)算結(jié)果,因?yàn)槎O管損耗與I成正比,而不是I?. 顯然,MOSFET或二極管的導(dǎo)通時(shí)間越長,傳導(dǎo)損耗也越大。對于降壓型轉(zhuǎn)換器,輸出電壓越低,二極管產(chǎn)生的功耗也越大,因?yàn)樗幱趯?dǎo)通狀態(tài)的時(shí)間越長。

          3、開關(guān)動(dòng)態(tài)損耗

          由于開關(guān)損耗是由開關(guān)的非理想狀態(tài)引起的,很難估算MOSFET和二極管的開關(guān)損耗,器件從完全導(dǎo)通到完全關(guān)閉或從完全關(guān)閉到完全導(dǎo)通需要一定時(shí)間,在這個(gè)過程中會(huì)產(chǎn)生功率損耗。

          圖4所示MOSFET的漏源電壓(VDS)和漏源電流(IDS)的關(guān)系圖可以很好地解釋MOSFET在過渡過程中的開關(guān)損耗,從上半部分波形可以看出,tSW(ON)和tSW(OFF)期間電壓和電流發(fā)生瞬變,MOSFET的電容進(jìn)行充電、放電。 圖4所示,VDS降到最終導(dǎo)通狀態(tài)(= ID × RDS(ON))之前,滿負(fù)荷電流(ID)流過MOSFET.相反,關(guān)斷時(shí),VDS在MOSFET電流下降到零值之前逐漸上升到關(guān)斷狀態(tài)的最終值。開關(guān)過程中,電壓和電流的交疊部分即為造成開關(guān)損耗的來源,從圖4可以清楚地看到這一點(diǎn)。

          淺析影響DC-DC轉(zhuǎn)換器效率的主要因素

          圖4. 開關(guān)損耗發(fā)生在MOSFET通、斷期間的過渡過程 開關(guān)損耗隨著SMPS頻率的升高而增大,這一點(diǎn)很容易理解,隨著開關(guān)頻率提高(周期縮短),開關(guān)過渡時(shí)間所占比例增大,從而增大開關(guān)損耗。開關(guān)轉(zhuǎn)換過程中,開關(guān)時(shí)間是占空比的二十分之一對于效率的影響要遠(yuǎn)遠(yuǎn)小于開關(guān)時(shí)間為占空比的十分之一的情況。由于開關(guān)損耗和頻率有很大的關(guān)系,工作在高頻時(shí),開關(guān)損耗將成為主要的損耗因素。

          脈寬調(diào)制相關(guān)文章:脈寬調(diào)制原理


          關(guān)鍵詞: DC-DC 轉(zhuǎn)換器效率

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();