針對便攜式設(shè)備充電電路的分立器件保護(hù)方案
便攜式電子系統(tǒng)往往需要通過一個墻體適配器(交流-直流轉(zhuǎn)換子系統(tǒng))利用外部電源為其內(nèi)部電池充電。如今的電池組大都采用了鋰技術(shù),因為鋰技術(shù)能減小便攜式產(chǎn)品的總重量。但另一方面,這種產(chǎn)品必須遵守嚴(yán)格的充電規(guī)則。需要注意的是,充電步驟如果出現(xiàn)問題可能會導(dǎo)致鋰離子溫度升高、熱量失控而產(chǎn)生爆炸,威脅人們的生命。要避免出現(xiàn)此類事故,首選的安全措施之一就是從外部來保護(hù)負(fù)責(zé)管理電池組充電的內(nèi)部充電器。
過壓現(xiàn)象產(chǎn)生的根源
為保證充電電壓不超出系統(tǒng)所能承受的最大額定電壓,便攜式設(shè)備和移動設(shè)備供應(yīng)商一般都會隨設(shè)備提供專用的墻體適配器。使用此類適配器就能保證AC-DC轉(zhuǎn)換器的輸出電壓得到很好的控制,輸出紋波受到較好的抑制。
然而,盡管設(shè)備供應(yīng)商明確建議用戶只能使用原裝充電器,后裝配件仍然有它的市場,為旅行方便,或僅為在原裝配件壞掉后保證設(shè)備的繼續(xù)使用,用戶可能會使用第二個或者第三個墻體適配器。
根據(jù)適配器復(fù)雜度的不同,其瞬時輸出電壓有可能遠(yuǎn)遠(yuǎn)超出制造今天這些小型便攜式產(chǎn)品所采用的敏感電子器件的額定電壓。
導(dǎo)致墻體適配器輸出電壓增大的另一個可能的原因是光偶反饋的損耗(SMPS充電器),這一故障即便在高端AC-DC市場也可能出現(xiàn)。此時,輸出電壓可能增大至20V,如果使用過壓保護(hù)器件(OVP),可以避免系統(tǒng)中直接面對如此危險的電壓。
由于適配器電纜中的串聯(lián)電感,熱插拔AD-DC轉(zhuǎn)換器也可能導(dǎo)致過壓現(xiàn)象出現(xiàn)。此時的最大紋波電壓取決于移動設(shè)備的輸入電容和電纜的寄生電感。而如果在該移動設(shè)備上增加一個OVP器件,OVP的軟啟動特性就會消除熱插拔所帶來的過沖效應(yīng)。
OVP的設(shè)計考慮
與前幾代過壓保護(hù)器件不同的是,為了節(jié)省PCB空間,新的OVP中如今集成了旁路元件(N MOSFET或 P MOSFET)。在計算雙芯片方案的PCB面積時,必須考慮器件的封裝尺寸和兩個器件之間的布線寬度。新一代OVP的PCB空間與老一代驅(qū)動+MOSFET方案相比最多可節(jié)約60%。但是,考慮到改善因充電電流引起的散熱問題,仍必須仔細(xì)設(shè)計PCB布線。安森美半導(dǎo)體的數(shù)據(jù)手冊文檔中給出了焊接點到空氣的熱阻Rθ曲線。
此外,為了降低與芯片內(nèi)部焊盤相連的焊接點溫度,還必須再增加額外的銅表面。由于這個芯片內(nèi)部焊盤與NMOS的漏極相連,因此添加的額外銅表面應(yīng)連接到IN管腳或連到一個獨立的平面,而且這個銅表面絕對不能接地。
此外,過壓閾值的定義也很重要。OVLO和UVLO閾值由內(nèi)部比較器決定,當(dāng)出現(xiàn)過壓或欠壓時,內(nèi)部比較器會切斷旁路元件。
OVLO所定的電平必須高于AC-DC的最大輸出工作電壓并低于系統(tǒng)首個元件的最大額定電壓。圖1所示為一個基于全集成OVP器件的典型便攜式設(shè)備的結(jié)構(gòu)(此處的OVP采用的是NCP347MTAE)。
圖1:基于全集成OVP器件的典型便攜式設(shè)備的結(jié)構(gòu)。
為保證工作的穩(wěn)定性,還必須在器件前方盡可能靠近IN管腳的地方放置一個輸入電容。該電容的特性必須與保護(hù)器件的特性一致。
首先要檢查的是該電容的直流偏置曲線,以保證其工作時所能承受的電壓高于UVLO到 OVLO這個電壓范圍。例如,假設(shè)保護(hù)器件前方需要一個1?F的陶瓷電容。
考慮到陶瓷電容的擊穿電壓(200V以上)高于保護(hù)器件的最大額定電壓(30),因此在此類產(chǎn)品上可以使用一個10V/1 ?F或16V/1?F的電容。每個電容的具體擊穿電壓取決于所用陶瓷材料的品質(zhì)。圖2給出了0603/X5R/1?F/16V這款電容的直流偏置和直流擊穿電壓。
圖2:陶瓷電容0603/X5R/1?F/16V的直流偏置和直流擊穿電壓。
主要產(chǎn)品特性
今天,我們已經(jīng)可以在很小的產(chǎn)品封裝內(nèi)實現(xiàn)極低的Rdson。例如采用2×2.5mm WDFN封裝 的NCP347,其Rdson只有110mΩ,但卻能承受高達(dá)2安培的直流電流。25℃室溫下墻體適配器到充電器之間的典型壓降為52mV。由于損耗極小,因此此類產(chǎn)品可支持低輸出電壓的墻體適配器。適配器到充電器之間的壓差越小,便攜式器件的散熱越少,對墻體適配器負(fù)載調(diào)節(jié)不佳的承受能力也越強(qiáng)。
而新型充電器結(jié)構(gòu)的出現(xiàn),使得內(nèi)部開關(guān)能在很低的功耗下實現(xiàn)快速關(guān)斷。一般情況下,下游系統(tǒng)中不會出現(xiàn)瞬態(tài)過壓。在上面提到的例子中,典型的關(guān)斷時間是1?s,最長也只有5?s。
新器件上可能會增加一個用于啟動器件,或在我們希望將系統(tǒng)與墻體適配器隔離開時將其拉高就能切換到電池供電方式的“使能”管腳。另外,還可以用一個狀態(tài)管腳來監(jiān)控電壓值。當(dāng)該管腳處于開漏極輸入狀態(tài)時,必須通過一個最小為10kΩ的上拉電阻將其上拉到電池電壓。
如果將狀態(tài)管腳連到一個微控制器的輸入,并將“使能”管腳連到微控制器的輸出,就可以在器件輸入管腳上的電壓持續(xù)出問題時完全切斷OVP器件。而微控制器又可以根據(jù)狀態(tài)管腳的情況,在合適的時候接通OVP。
為新標(biāo)準(zhǔn)設(shè)計新方案
IC制造商們?yōu)榻鉀Q過壓問題以及有效保護(hù)他們的器件,提供了新穎的解決方案,例如安森美公司的NCP347和NCP348。由于能承受2安培的充電電流并提供高達(dá)28V的保護(hù),而且關(guān)斷速度極快,因此這些全集成的方案基本上能滿足大多數(shù)應(yīng)用的要求。為了滿足不同AC-DC輸出電壓的要求,我們提供了一些OVLO閾值不同的產(chǎn)品版本。它們的Rdson、關(guān)斷時間和耗電情況都能滿足最嚴(yán)苛的要求。
值得一提的是,其中有一款產(chǎn)品兼容USB充電,特別適合新的中國充電標(biāo)準(zhǔn)。事實上,現(xiàn)在已經(jīng)有越來越多的便攜式設(shè)備開始配備USB連接器,能通過USB連接器與帶USB接口的主機(jī)或墻體適配器相連實現(xiàn)充電。
評論