CRT彩色顯示器檢修一則
Rj2:焊料的熱阻
Rj3:鋁基板的熱阻
Rj4:導熱硅膠的熱阻
Rj5:從散熱器到空氣的熱阻
所以從芯片到空氣的總熱阻就應該是:
Rja=Rj1+Rj2+Rj3+Rj4+Rj5
只要知道從芯片到空氣的全部熱阻,就可以根據(jù)需要耗散的功率Pd,計算出結溫來,知道了結溫也就可以知道其壽命了。
假定環(huán)境溫度為Ta,那么結溫為:
Tj=Pd(Rj1+Rj2+Rj3+Rj4+Rj5)+Ta
然而實際的LED燈具,從LED芯片到空氣所經(jīng)過的熱阻要遠比這個多很多,例如,通常薄膜印制板是安裝在鋁基板上,鋁基板再安裝到鋁散熱器上,其間還要涂上導熱膠,導熱膠的厚度很難估計,而且其中還有殘存的氣隙。對于采用熱管的燈具,則還要考慮熱管和散熱鰭片之間的空隙和導熱膠的熱阻等問題。
而且最難估算的是Rj5,也就是散熱器到空氣的熱阻。這牽涉到很多有關對流和輻射的散熱機制問題。
需要注意的是在計算LED的散熱時,經(jīng)常犯的一個錯誤是把LED的全部功率當成是其耗散功率Pd。例如,一個1W的LED,其正向電壓是3.3V,正向電流是350mA。于是就把這二者的乘積1.155瓦作為其耗散功率。這是錯誤的。因為這只是其輸入功率,而不是其耗散功率。有一部分輸入功率變成了有用的光發(fā)射出去了。需要作為熱來耗散的那部分,應當是輸入功率減去以有用光的形式發(fā)射出去的那部分,才是需要作為熱而耗散的那部分。不過這部分比較難計算。一般來說,因為LED的發(fā)光效率有所不同,而這個耗散功率也有所不同。一般來說,可以作如下的近似:發(fā)光效率為100lm/W,其耗散功率應為70%輸入功率,對于上面所說的1W的LED,也就是1.155x0.7=0.8W變成無用的熱需要散發(fā)出去。
那么是不是知道了所有各部分的熱阻,我們就可以知道這個LED燈具的總熱阻,也就可以知道LED芯片的結溫,也就可以知道這個燈具的壽命了呢?
情況遠遠不是那么簡單,雖然我們可以仔細分析每一部分的熱阻,甚至還可以得到比較精確的數(shù)字,但是還是有很多重要的因素被我們忽略掉了。因為上面的這個模型只不過是單個LED的燈具的模型,而實際的燈具要比這個模型復雜很多。
1.LED的分布。在很多情況下,LED燈具里是由很多顆LED所構成而不是只有一個LED??赡芩羞@些LED都焊在一塊鋁基板上。這時候如果只用標準的鋁基板的熱阻來計算整個燈具的熱阻就會有很大的出入。因為每個LED的散熱會受到周圍LED所發(fā)出的熱影響。換句話說,這時鋁基板的熱阻是很難計算的。
2.其他熱源的影響,例如LED的恒流電源就是重要的發(fā)熱源,假如這個發(fā)熱源靠近某些LED,那么就會明顯降低這些LED的散熱而縮短其壽命。也相當于改變了其熱阻。
3.熱阻實際上只考慮了熱傳導,而根本沒有考慮熱對流和熱輻射。熱量從LED芯片出發(fā),經(jīng)過了一系列不同材質傳導,最后到達鰭片散熱器。這些熱量最后都要散發(fā)到空氣中去。如果散發(fā)不到空氣中,那么這些熱量也會越積越多,導致結溫的升高。所以可以說,最后鰭片散熱器散到空氣中的這一環(huán)節(jié),是最關鍵的一環(huán),是最復雜的一環(huán),也是最難計算的一環(huán)。或者說Rj5基本上是無法用簡單的計算就能算出來的。這就使得要通過所有部件的熱阻來計算出LED的結溫幾乎是不可能的事。
七.散熱器的設計
要談到散熱器,有一個概念先要搞清楚,就是導熱和散熱的區(qū)別。導熱就是要把熱量最快地從發(fā)熱源傳送到散熱器表面,而散熱則是要把熱量從散熱器表面散發(fā)到空氣中去。首先要把熱最快的導出來,然后要最有效地散到空氣里去。因為不管采用什么方法散熱,最后還是只能把熱量散發(fā)到空氣中。而熱量的散發(fā)只有兩種途徑:對流和輻射。
7.1對流散熱和輻射散熱
對于對流散熱來說,其基本公式如下:
Q=h?A?△T
其中Q為散去的熱量,h為熱對流系數(shù),A為散熱器的散熱面積,△T為散熱器表面和附近空氣之間的溫度差。
更形象一點,可以用圖10來表示:
圖10:基于對流的散熱量的計算
鰭片的散熱主要是靠對流和輻射,這其中對流是最重要的。這兩部分都取決于鰭片的總面積。面積越大,散熱效果越好。然而,對流散熱則不完全取決于鰭片面積的大小,而且還和風力風向有關,在完全無風的狀態(tài)下,則和自然對流的阻力有關。例如假如為了防塵和防鳥屎堆積,鰭片朝下安裝,那么鰭片兩端不能堵住,而且燈具要么向下傾斜要么向上傾斜,可以讓熱空氣能夠順暢地流動。
熱輻射的散熱公式為“Q=E×S×F×Δ(Ta-Tb)”。公式中Q代表熱輻射所交換的能力,E是物體表面的熱輻射系數(shù)。在實際中,當物質為金屬且表面光潔的情況下,熱輻射系數(shù)比較小,而把金屬表面進行處理后(比如發(fā)黑)其表面熱輻射系數(shù)值就會提升。塑料或非金屬類的熱輻射系數(shù)值大部分都比較高。S是物體的表面積,F(xiàn)則是輻射熱交換的角度和表面的函數(shù)關系,但這里這個函數(shù)比較難以解釋。Δ(Ta-Tb)則是表面a的溫度同表面b之間的溫度差。因此熱輻射量和熱輻射系數(shù)、物體表面積的大小以及溫度差之間都存在正比關系。絕對黑體的輻射系數(shù)為1。熱輻射散熱也可以用另一個公式來表示:
由表中可見,氧化處理是改進材料的輻射散熱的重要途徑。采用鑄鐵的暖氣片有相當一部分的散熱靠的是輻射散熱。而且塑料的熱輻射性能和氧化后的金屬差不多。
為了改進輻射散熱,鋁合金鰭片散熱器要進行發(fā)黑處理,但是有人是采用噴黑色塑膠漆的方法,這種方法雖然也使其表面變黑,但是實際上又加上了一層絕緣層,妨礙了它的散熱。最好的方法是采用陽極氧化發(fā)黑處理,這個氧化層可以做得很薄,不至于影響其散熱,但對輻射散熱有很大的改進。
總之,不管是對流還是輻射都是和散熱器的散熱面積成正比,所以要改善散熱一定要加大散熱器的面積。
八.鰭片散熱器
散熱器采用鰭片的形狀是為了加大散熱面積。以利于輻射散熱和對流散熱。散熱器的最重要指標就是它的散熱面積A,但是散熱器的不同部位的散熱效果是不同的。在根部的散熱效果就差,而在頂部的散熱效果就好。所以散熱器有一個有效散熱面積。它通常是實際面積的70%左右。從經(jīng)驗得出,一般要散1W功率的熱量大約需要50-60平方厘米的有效散熱器面積。
圖11:結溫和長度的關系
而散熱器的材料通常是用鋁合金,和銅相比,雖然其熱傳導只有銅的一半,但是它重量輕、易加工、價格便宜,所以還是廣泛地應用于散熱器之中。
為了加大散熱面積,通常會采用增加高度的方法。但是,高度增加到一定程度以后其作用會越來越小。圖12表明增加高度對于降低結溫的影響的一個例子。
圖12:LED結溫隨散熱器的高度增加而降低
由圖中可以看出,高度增加到40mm以后,結溫的降低就很慢了。
加大長度也是加大面積的一個方法。但是并不是長度越長越好。
由圖中可知,長度增加到一定程度以后,結溫不但不再降低,反而會升高。這是因為空氣在沿長度方向的流動受到阻礙所致(主要對于垂直放置的鰭片為如此)。
所以對于散熱器來說,除了加大面積以外,如何加速空氣的對流是很重要的事,尤其是像LED路燈這類安裝在室外的路燈更為重要。由于室外的風向是不定的,為了在各種風向情況下都能有很好的對流,最好采用針狀鰭片散熱器。但這也減小了其等效散熱面積很大的百分比。
珠海南科首次把針狀散熱器應用至LED路燈中,據(jù)說這可以使LED的結溫降低15度以上,提高了LED的壽命。
路燈散熱器往往由于灰塵和鳥糞的積累而使其散熱效果大為降低,所以通常采用朝下安裝的方法來避免,但是這樣做又會使空氣對流的效果降低,因為熱空氣是向上流動的。通常要在安裝時有一個傾斜角來改善。
九.采用強制風冷散熱
評論