變壓器鐵芯的渦流損耗分析
,既可以代表某一鐵芯片的厚度,也可以代表變壓器鐵芯的總厚度,因?yàn)殍F芯片的厚度
的取值是任意的。
但是,在變壓器鐵芯總面積相等的情況下,由一塊鐵芯片或多塊相同厚度的鐵芯片組成的變壓器鐵芯,其渦流損耗是不相同的。例如,在變壓器鐵芯總面積相等的情況下,由一塊鐵芯片組成的變壓器鐵芯的渦流損耗,是由兩塊鐵芯片組成的變壓器鐵芯渦流損耗的4倍;如果兩者鐵芯片的數(shù)目的比值為3倍,那么渦流損耗的比值就是9倍。由此可知,渦流損耗是按n2遞減的,其中n為變壓器鐵芯芯片的個(gè)數(shù)。
實(shí)際用(2-69)式來(lái)計(jì)算開關(guān)變壓器的渦流損耗還是有一定局限性的,因?yàn)椋趯?duì)(2-69)式的推導(dǎo)過(guò)程中并沒有考慮兩塊鐵芯片之間渦流磁場(chǎng)的互相影響,從原理上來(lái)說(shuō)變壓器鐵芯中間的鐵芯片與邊緣的鐵芯片之間渦流磁場(chǎng)互相影響程度是不一樣的;并且鐵芯片與鐵芯片之間不可能完全絕緣。
另外,目前大多數(shù)開關(guān)變壓器使用的鐵芯材料基本上都是鐵氧體導(dǎo)磁材料,這些以鐵氧體為材料的變壓器鐵芯是按陶瓷的生產(chǎn)工藝,先把鐵磁混合材料沖壓成型,然后加高溫?zé)Y(jié)而成,因此它是一個(gè)整體,或?yàn)榱税惭b方便把它分成兩個(gè)部分組合而成。
如果把以鐵氧體變壓器鐵芯的形狀看成是一個(gè)圓柱體,那么(2-50)、(2-51)的麥克斯韋一維方程式就可以看成是電磁場(chǎng)能量是由圓柱體中心向周圍傳播和散發(fā)的;這樣圓柱形變壓器鐵芯就相當(dāng)于由不同內(nèi)外徑,厚度變量為 的多個(gè)圓筒體組合而成?;蛘撸颜麄€(gè)鐵氧體變壓器鐵芯,看成為由單個(gè)厚度為d/2的圓柱體組成,這里d為圓柱體的直徑。
圖2-21就是用來(lái)求鐵氧體圓柱體變壓器鐵芯內(nèi)某截面磁場(chǎng)分布的原理圖,圖中虛線表示交變磁場(chǎng)在變壓器鐵芯內(nèi)部感應(yīng)產(chǎn)生渦流。我們用同樣的方法,從(2-59)開始對(duì)表示磁場(chǎng)分布的(2-58)式進(jìn)行積分求平均值,然后求出積分常數(shù)c2,即可以求得圓柱體鐵芯內(nèi)的磁場(chǎng)分布式:
上面(2-70)式是表示圓柱體鐵芯截面沿x軸方向的磁場(chǎng)分布圖。其實(shí)磁場(chǎng)分布在整個(gè)鐵芯截面的xy平面內(nèi)都是以中心對(duì)稱的。這樣圓柱形變壓器鐵芯中的磁場(chǎng)強(qiáng)度在xy平面的分布函數(shù)H(x,y)曲面,就相當(dāng)于把圖2-19-a的函數(shù)曲線,以中心為圓心旋轉(zhuǎn)一周而得到的新圖形。
圖2-22-a和圖2-22-b是圓柱形鐵芯中磁場(chǎng)強(qiáng)度按水平分布的函數(shù)H(x,y)曲面圖和按時(shí)間分布的函數(shù)H(t)曲線圖。
根據(jù)上面分析,以同樣方法我們可以求出圓柱體變壓器鐵芯的渦流損耗為:
由此我們對(duì)園柱體變壓器鐵芯同樣可以得出結(jié)論:圓柱體變壓器鐵芯的渦流損耗,與磁感強(qiáng)度增量和鐵芯的體積成正比,與鐵芯直徑的平方成正比,與電阻率及脈沖寬度的平方成反比。
或者,圓柱體變壓器鐵芯的渦流損耗,與磁感強(qiáng)度增量以及鐵芯直徑的四次方成正比,與電阻率及脈沖寬度的平方成反比。
(2-71)式與(2-69)式在原理上沒有本質(zhì)上的區(qū)別,因此,圖2-20的等效電路對(duì)于(2-71)式同樣有效。
上面對(duì)渦流工作原理的分析,雖然看起來(lái)并不是很復(fù)雜,但要精確計(jì)算渦流損耗的能量是非常困難的。因?yàn)楹茈y精確測(cè)量出變壓器鐵芯的損耗電阻,特別是,目前大多數(shù)開關(guān)變壓器使用的鐵芯材料,基本上都是鐵氧體導(dǎo)磁材料;這些鐵氧體變壓器鐵芯是由多種鐵磁金屬材料與非金屬材料混合在一起,然后按陶瓷的生產(chǎn)工藝,把鐵磁混合材料沖壓成型,最后加高溫?zé)Y(jié)而成的。
由于鐵氧體屬于金屬氧化物,大部分金屬氧化物都具有半導(dǎo)體材料的共同性質(zhì),就是電阻率會(huì)隨溫度變化,并且變化率很大。熱敏電阻就是根據(jù)這些性質(zhì)制造出來(lái)的,溫度每升高一倍,電阻率就會(huì)下降(或上升)好幾倍,甚至幾百倍。大多數(shù)熱敏電阻的材料也屬于金屬氧化物,因此,鐵氧體也具有熱敏電阻的性質(zhì)。
鐵氧體變壓器鐵芯在常溫下,雖然電阻率很大,但當(dāng)溫度升高時(shí),電阻率會(huì)急速下降;相當(dāng)于圖2-20-a中的Rb渦流等效電阻變小,流過(guò)Rb的電流增加;當(dāng)溫度升高到某個(gè)極限值時(shí),變壓器初級(jí)線圈的有效電感量幾乎下降到0,相當(dāng)于導(dǎo)磁率也下降到0,或變壓器初、次級(jí)線圈被短路,此時(shí)的溫度稱為居里溫度,用Tc表示。因此,鐵氧體的電阻率和導(dǎo)磁率都是不穩(wěn)定的,鐵氧體開關(guān)變壓器的工作溫度不能很高,一般不要超過(guò) 。
圖2-23是日本TDK公司高導(dǎo)磁率材料H5C4系列磁芯初始導(dǎo)磁率
順便說(shuō)明,圖2-23中的初始導(dǎo)磁率 一般是用磁環(huán)作為樣品測(cè)試得到的,測(cè)試信號(hào)的頻率一般比較低,僅為10kHz,并且測(cè)試時(shí)一般都選用最大導(dǎo)磁率作為結(jié)果;因此,實(shí)際應(yīng)用中的開關(guān)變壓器磁芯的導(dǎo)磁率并沒有這么高。
>電子變壓器相關(guān)文章:電子變壓器原理
評(píng)論