CMOS求和比較器在PWM開關電源控制中的應用
1 引 言
開關電源體積小、重量輕、變換效率高, 因此廣泛應用于各種電子設備中。它體積小、重量輕、功率因數(shù)高,具有較高的工作效率,但結構過于復雜使它的應用受到一定的限制。下面就這個問題提出一個可行的解決方法。
2 開關電源電流PWM控制的基本原理
電流控制的PWM技術是一種新穎的控制技術,1967年由美國BOSE公司提出。該技術有不同路線方案來實現(xiàn),其共同特點是:利用電感電流的反饋直接去控制功率開關的占空比,以實現(xiàn)峰值電流對電壓反饋的跟蹤。下面我們就通過分析利用電流控制的PWM降壓變換器來了解這一技術的基本原理。
圖1給出了電流控制的PWM降壓變換器的基本組成。
圖1 電流控制的PWM降壓變換器的基本組成
從該電路可以看出,反饋電路由兩部分組成:輸出電壓U0經(jīng)采樣電路(未畫出)得到反饋電壓Uf反饋到誤差放大器的反向端,基準電壓UR加至誤差放大器同向端,構成常規(guī)的電壓反饋,即電壓外環(huán);由電阻RS上檢測得到的電流反饋信號US和誤差放大器的輸出Ue分別加至PWM比較器同向端和反向端,構成了電流內(nèi)環(huán)。PWM比較器輸出加至觸發(fā)器的R端,時鐘振蕩器從S端向鎖存器輸出一系列恒定頻率的時鐘信號。當功率管導通時,隨著電流的增大電流檢測信號US也同時增大,直到同Ue電壓相等時PWM比較器輸出高電平,使鎖存器輸出轉(zhuǎn)為低電平,功率管關斷。時鐘振蕩器輸出的穩(wěn)定時鐘信號通過鎖存器控制著三極管的通斷。由此可以看出,由于引入了電流反饋,對輸出電壓有前饋調(diào)節(jié)作用,提高了系統(tǒng)的動態(tài)響應,由于電感電流直接跟隨誤差電壓的變化,輸出電壓就可以很容易的得到控制。電流內(nèi)環(huán)還使開關電源變換器易于實現(xiàn)并聯(lián)運行,有利于實現(xiàn)變換器的模塊設計。
電流控制PWM技術有很多優(yōu)點,如電壓調(diào)整率好;回路穩(wěn)定性好,負載響應快;功耗小;有較好的并聯(lián)能力等等,但同時它的缺點也是不能忽視的:占空比大于50%時系統(tǒng)可能出現(xiàn)不穩(wěn)定性,可能會產(chǎn)生次諧波振蕩;在電路拓撲結構選擇上也有局限,在升壓型和降壓-升壓型電路中,由于儲能電感不在輸出端,存在峰值電流與平均電流的誤差。針對這種情況,當占空比大于50%時,一般是采用諧波補償?shù)姆椒▉砜朔秉c。但在實際應用中,由于輸出級的電感L和電容C的存在,當開關電源的負載發(fā)生變化時,誤差放大器必須調(diào)整自己的補償以使自己達到穩(wěn)定,但實際電路中大都采用集成PWM控制器件,不可能根據(jù)負載的變化及時對誤差放大器做出調(diào)整,系統(tǒng)的自適應能力較差。
開關電源體積小、重量輕、變換效率高, 因此廣泛應用于各種電子設備中。它體積小、重量輕、功率因數(shù)高,具有較高的工作效率,但結構過于復雜使它的應用受到一定的限制。下面就這個問題提出一個可行的解決方法。
2 開關電源電流PWM控制的基本原理
電流控制的PWM技術是一種新穎的控制技術,1967年由美國BOSE公司提出。該技術有不同路線方案來實現(xiàn),其共同特點是:利用電感電流的反饋直接去控制功率開關的占空比,以實現(xiàn)峰值電流對電壓反饋的跟蹤。下面我們就通過分析利用電流控制的PWM降壓變換器來了解這一技術的基本原理。
圖1給出了電流控制的PWM降壓變換器的基本組成。
從該電路可以看出,反饋電路由兩部分組成:輸出電壓U0經(jīng)采樣電路(未畫出)得到反饋電壓Uf反饋到誤差放大器的反向端,基準電壓UR加至誤差放大器同向端,構成常規(guī)的電壓反饋,即電壓外環(huán);由電阻RS上檢測得到的電流反饋信號US和誤差放大器的輸出Ue分別加至PWM比較器同向端和反向端,構成了電流內(nèi)環(huán)。PWM比較器輸出加至觸發(fā)器的R端,時鐘振蕩器從S端向鎖存器輸出一系列恒定頻率的時鐘信號。當功率管導通時,隨著電流的增大電流檢測信號US也同時增大,直到同Ue電壓相等時PWM比較器輸出高電平,使鎖存器輸出轉(zhuǎn)為低電平,功率管關斷。時鐘振蕩器輸出的穩(wěn)定時鐘信號通過鎖存器控制著三極管的通斷。由此可以看出,由于引入了電流反饋,對輸出電壓有前饋調(diào)節(jié)作用,提高了系統(tǒng)的動態(tài)響應,由于電感電流直接跟隨誤差電壓的變化,輸出電壓就可以很容易的得到控制。電流內(nèi)環(huán)還使開關電源變換器易于實現(xiàn)并聯(lián)運行,有利于實現(xiàn)變換器的模塊設計。
電流控制PWM技術有很多優(yōu)點,如電壓調(diào)整率好;回路穩(wěn)定性好,負載響應快;功耗小;有較好的并聯(lián)能力等等,但同時它的缺點也是不能忽視的:占空比大于50%時系統(tǒng)可能出現(xiàn)不穩(wěn)定性,可能會產(chǎn)生次諧波振蕩;在電路拓撲結構選擇上也有局限,在升壓型和降壓-升壓型電路中,由于儲能電感不在輸出端,存在峰值電流與平均電流的誤差。針對這種情況,當占空比大于50%時,一般是采用諧波補償?shù)姆椒▉砜朔秉c。但在實際應用中,由于輸出級的電感L和電容C的存在,當開關電源的負載發(fā)生變化時,誤差放大器必須調(diào)整自己的補償以使自己達到穩(wěn)定,但實際電路中大都采用集成PWM控制器件,不可能根據(jù)負載的變化及時對誤差放大器做出調(diào)整,系統(tǒng)的自適應能力較差。
pwm相關文章:pwm原理
評論