開關(guān)電源傳導(dǎo)EMI預(yù)測方法研究
1 引言
隨著開關(guān)頻率的提高以及功率密度的增加,開關(guān)電源內(nèi)部的電磁環(huán)境越來越復(fù)雜,其電磁兼容問題成為電源設(shè)計中的一大重點,同時也成為電源設(shè)計工作的一大難點。常規(guī)設(shè)計方法中,依靠經(jīng)驗設(shè)計處理EMC問題,樣機(jī)建立完畢之后才能對EMC問題做最后的考慮。傳統(tǒng)的EMC的補(bǔ)救辦法只能增加額外的元器件,而增加元件有可能影響原始的控制環(huán)帶寬,造成重新設(shè)計整個系統(tǒng)的最壞情況,增加了設(shè)計成本。為了避免出現(xiàn)這樣的情況,需要在設(shè)計過程中考慮EMC的問題,對開關(guān)電源的EMI進(jìn)行一定精度的分析和預(yù)測,并根據(jù)干擾產(chǎn)生的機(jī)理及其在各頻帶的分布情況改進(jìn)設(shè)計,降低EMI水平,從而降低設(shè)計成本。
2 開關(guān)電源EMI特點及分類
對開關(guān)電源傳導(dǎo)電磁干擾進(jìn)行預(yù)測,首先需要明確其產(chǎn)生機(jī)理以及噪聲源的各項特性。由于功率開關(guān)管的高速開關(guān)動作,其電壓和電流變化率都很高,上升沿和下降沿包含了豐富的高次諧波,所以產(chǎn)生的電磁干擾強(qiáng)度大;開關(guān)電源的電磁干擾主要集中在二極管、功率開關(guān)器件以及與其相連的散熱器和高頻變壓器附近;由于開關(guān)管的開關(guān)頻率從幾十kHz到幾MHz,所以開關(guān)電源的干擾形式主要是傳導(dǎo)干擾和近場干擾。其中,傳導(dǎo)干擾會通過噪聲傳播路徑注入電網(wǎng),干擾接入電網(wǎng)的其他設(shè)備。
開關(guān)電源傳導(dǎo)干擾分為2大類。
1)差模(DM)干擾。DM 噪聲主要由di/dt引起,通過寄生電感,電阻在火線和零線之間的回路中傳播,在兩根線之間產(chǎn)生電流Idm,不與地線構(gòu)成回路。
2)共模(CM)干擾。CM 噪聲主要由dv/dt引起,通過PCB的雜散電容在兩條電源線與地的回路中傳播,干擾侵入線路和地之間,干擾電流在兩條線上各流過二分之一,以地為公共回路;在實際電路中由于線路阻抗不平衡,使共模信號干擾會轉(zhuǎn)化為不易消除的串?dāng)_干擾。
3 開關(guān)電源EMI的仿真分析
從理論上來講,無論是時域仿真還是頻域仿真,只要建立了合理的分析模型,其仿真結(jié)果都能正確反映系統(tǒng)的EMI量化程度。
時域仿真方法需要建立變換器中包含所有元件參數(shù)的電路模型,利用PSPICE或Saber軟件進(jìn)行仿真分析,使用快速傅里葉分析工具得到EMI的頻譜波形,這種方法在DM 噪聲的分析中已經(jīng)得到了驗證。然而開關(guān)電源中的非線性元件如MOSFET,IGBT 等半導(dǎo)體器件,其非線性特性和雜散參數(shù)使模型非常復(fù)雜,同時開關(guān)電源電路工作時其電路拓?fù)浣Y(jié)構(gòu)不斷改變,導(dǎo)致了仿真中出現(xiàn)不收斂的問題。在研究CM 噪聲時,必須包含所有的寄生元件參數(shù),由于寄生參數(shù)的影響,F(xiàn)FT結(jié)果和實驗結(jié)果很難吻合;開關(guān)功率變換器通常工作在很大的時間常數(shù)范圍內(nèi),主要包括3組時間常數(shù):與輸出端的基本頻率有關(guān)的時間常數(shù)(幾十ms);與開關(guān)元件的開關(guān)頻率有關(guān)的時間常數(shù)(幾十μs);與開關(guān)元件導(dǎo)通或關(guān)斷時的上升時間和下降時間有關(guān)的時間常數(shù)(幾ns)。
正因如此,在時域仿真中,必須使用非常小的計算步長,并且需要用很長時間才能完成計算;另外,時域方法得到的結(jié)果往往不能清晰地分析電路中各個變量對干擾的影響,不能深層解釋開關(guān)電源的EMI行為,而且缺乏對EMI機(jī)理的判斷,不能為降低EMI給出明確的解決方案。
頻域仿真是基于噪聲源和傳播途徑阻抗模型基礎(chǔ)上的分析方法。利用LISN為噪聲源提供標(biāo)準(zhǔn)負(fù)載阻抗。如圖1所示,從LISN看過去,整個系統(tǒng)可以簡化成噪聲源、噪聲路徑和噪聲接收器(LISN)。頻域方法可以大大降低仿真計算的時間,一般不會出現(xiàn)計算結(jié)果不收斂的情況。
圖1 噪聲源與傳播路徑概念
圖1中,噪聲路徑包括PCB傳導(dǎo)、耦合路徑,散熱片電容耦合路徑,變壓器耦合路徑等。
4 基于頻域方法的SMPS等效電路模型
對開關(guān)電源進(jìn)行頻域仿真,首先要建立開關(guān)電源的頻域仿真模型。開關(guān)電源EMI頻域預(yù)測的重點是對噪聲路徑的建模,其中包括:無源器件的高頻模型;PCB及結(jié)構(gòu)寄生參數(shù)的抽取。
在考慮無源器件、PCB及結(jié)構(gòu)寄生參數(shù)的基礎(chǔ)上,建立開關(guān)電源集中參數(shù)的電路模型,可以通過計算或仿真得到該電路的阻抗,諧振點等,從而為降低EMI提供有力的依據(jù)。
由于差模噪聲和共模噪聲的傳播路徑不同,有必要對DM 傳播路徑和CM 傳播路徑分別建模。這樣可以更好地分析各種干擾的特點,而且還可以為設(shè)計濾波器提供有力的依據(jù)。
4.1 噪聲源的模型建立
由于需要分別對DM 噪聲和CM 噪聲進(jìn)行分析,所以對DM 噪聲源和CM 噪聲源也需要分別建模。M.Nave在文獻(xiàn)[3]中提出使用電流源作為DM 噪聲源,使用電壓源作為CM 噪聲源的方法,就是因為DM 噪聲主要由di/dt引起,而CM 噪聲則主要由dv/dt引起。文獻(xiàn)[4]在此基礎(chǔ)上對CM 噪聲源進(jìn)行了改進(jìn),考慮了電壓過沖和下沖,并且在線路阻抗近似平衡的情況下,利用DM 電流源和一個電壓源來表示CM 噪聲源(如圖2所示)。
圖2 共模噪聲源的表示
文獻(xiàn)基本都是用梯形波來表示噪聲源的,但實際中并不是每個電路中的開關(guān)器件的波形都能很好地用梯形波近似,圖3所示即為一個反激電源開關(guān)管的電流電壓波形,除了梯形波之外,還有電流尖峰,電壓過沖和下沖等分量,會導(dǎo)致噪聲源的頻譜與梯形波有一定的不同。所以不能盲目地使用梯形波來表征噪聲源,而是需要對電路進(jìn)行分析或者仿真,從而得到開關(guān)器件的電流或電壓波形,基于此波形再對噪聲源進(jìn)行建模,這樣才能更精確地反映開關(guān)電源的電磁干擾。
圖3 某反激電源開關(guān)管的電流電壓波形
4.2 無源器件的高頻模型
在EMI的頻率范圍內(nèi),常用的無源器件都不能再被認(rèn)為是理想的,他們的寄生參數(shù)嚴(yán)重影響著其高頻特性。
在各種無源器件中,電阻、電感和電容的高頻等效寄生參數(shù)可以用高頻阻抗分析儀測得。表1所示為各種無源器件的理想模型和高頻等效模型。
表1 電阻、電容、電感及變壓器的高頻等效模型
對于高頻變壓器,提出可以使用有限元分析方法和實驗測量法求取,從而可以得到漏感、原副邊自電容和原副邊互電容這些引起電路震蕩、增加傳導(dǎo)EMI的主要參數(shù)。使用ansoft公司的Maxwell仿真軟件,可以通過輸入變壓器的繞組和磁芯的幾何尺寸與電磁參數(shù),利用有限元分析的方法得到各寄生參數(shù)。實驗測量法的總體思路就是在所建立模型的基礎(chǔ)上,推導(dǎo)出變壓器在不同工作狀態(tài)下的阻抗特性(如原副邊繞組開路,短路的不同組合)方程,然后測量這些狀態(tài)下的阻抗,從而得到漏感和寄生電容。
4.3 PCB及結(jié)構(gòu)寄生參數(shù)的提取
除了元器件選取、電路及其結(jié)構(gòu)設(shè)計,PCB的布局、布線設(shè)計、線路板加工對電磁兼容會造成很大影響,是一個非常重要的設(shè)計環(huán)節(jié)。由于開關(guān)電源的PCB布線基本上都是依據(jù)經(jīng)驗手工布置,有很大的隨意性,這就增加了PCB分布參數(shù)提取的難度。PCB的寄生參數(shù)會造成開關(guān)電源噪聲傳播途徑的阻抗變化,影響控制器對開關(guān)電源輸出電壓電流的控制作用。PCB的布局不合理還會形成開關(guān)電源向外輻射電磁干擾的途徑,同時也會通過該途徑吸收外界電磁干擾,從而降低開關(guān)電源的電磁干擾抗擾度。所以PCB的布局布線是開關(guān)電源EMC設(shè)計中極為重要的環(huán)節(jié)。
對于傳導(dǎo)干擾,寄生參數(shù)的提取精確度是通過仿真有效預(yù)測EMI水平的關(guān)鍵。盡管對于結(jié)構(gòu)簡單的元件來說,寄生參數(shù)是很容易計算的,但是對于復(fù)雜結(jié)構(gòu)中的元件來說,并不是那么容易就能得到寄生參數(shù),例如多層板和直流母線的寄生參數(shù)。
為了建立開關(guān)電源PCB的高頻模型,需要對PCB的結(jié)構(gòu)寄生參數(shù)進(jìn)行抽取。提
相關(guān)推薦
技術(shù)專區(qū)
- FPGA
- DSP
- MCU
- 示波器
- 步進(jìn)電機(jī)
- Zigbee
- LabVIEW
- Arduino
- RFID
- NFC
- STM32
- Protel
- GPS
- MSP430
- Multisim
- 濾波器
- CAN總線
- 開關(guān)電源
- 單片機(jī)
- PCB
- USB
- ARM
- CPLD
- 連接器
- MEMS
- CMOS
- MIPS
- EMC
- EDA
- ROM
- 陀螺儀
- VHDL
- 比較器
- Verilog
- 穩(wěn)壓電源
- RAM
- AVR
- 傳感器
- 可控硅
- IGBT
- 嵌入式開發(fā)
- 逆變器
- Quartus
- RS-232
- Cyclone
- 電位器
- 電機(jī)控制
- 藍(lán)牙
- PLC
- PWM
- 汽車電子
- 轉(zhuǎn)換器
- 電源管理
- 信號放大器
評論