<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 安森美半導(dǎo)體DC-DC電源參考設(shè)計(jì)示例

          安森美半導(dǎo)體DC-DC電源參考設(shè)計(jì)示例

          作者: 時(shí)間:2009-02-20 來(lái)源:網(wǎng)絡(luò) 收藏

          近年來(lái),隨著的發(fā)展及數(shù)據(jù)業(yè)務(wù)的迅速擴(kuò)大,數(shù)據(jù)通信設(shè)備和電信網(wǎng)絡(luò)設(shè)備不斷走向融合,這就需要可靠的電源系統(tǒng)來(lái)為這些應(yīng)用供電。傳統(tǒng)的電源架構(gòu)是集中式電源架構(gòu),即單個(gè)電源從交流輸入線路向所有需要的輸出提供功率轉(zhuǎn)換,這種架構(gòu)的成本最低,但可靠性和靈活性差。而數(shù)據(jù)通信中的數(shù)字信號(hào)處理器(DSP)、專用集成電路(ASIC)、現(xiàn)場(chǎng)可編程門陣列(FPGA)、中央處理器(CPU)等器件需要低電壓供電從而獲得更大電流,這就要求電源供應(yīng)盡可能地接近負(fù)載,所以如今大多數(shù)應(yīng)用中采用的是分布式電源架構(gòu)。相應(yīng)的,分布式電源系統(tǒng)()對(duì)系統(tǒng)中不同設(shè)備、不同電路板、甚至是同一電路板上的不同電路采用不同的電源供電,從而提供更高的可靠性、靈活性及散熱性能。


          圖1:安森美半導(dǎo)體針對(duì)電信和網(wǎng)絡(luò)應(yīng)用提供的分布式電源解決方案。

          對(duì)于分布式電源系統(tǒng)而言,常見(jiàn)的是-48 V分布式電源系統(tǒng)。通常情況下,交流-直流(AC-DC)轉(zhuǎn)換器將交流輸入電源轉(zhuǎn)換為-48 V直流電源,同時(shí)給備用電池(蓄電池)供電。通過(guò)將-48 V電源的正極接地(即正極電平為0 V),就可以提供+48 V的輸入電壓,再通過(guò)直流-直流()隔離電源轉(zhuǎn)換和非隔離電源轉(zhuǎn)換為相應(yīng)負(fù)載提供所需的電壓電平。所謂隔離電源轉(zhuǎn)換,即輸入和輸出之間采用高頻變壓器進(jìn)行電氣隔離;而非隔離電源轉(zhuǎn)換的主電路中則沒(méi)有高頻變壓器。

          安森美半導(dǎo)體針對(duì)電信和網(wǎng)絡(luò)系統(tǒng)中的分布式電源應(yīng)用提供一系列的解決方案(如圖1所示)。本文將針對(duì)隔離和非隔離電源轉(zhuǎn)換應(yīng)用共選擇3種應(yīng)用作為示例,分析它們適合采用的電源拓?fù)浣Y(jié)構(gòu)及關(guān)鍵元件,特別是安森美半導(dǎo)體提供的解決方案如何能夠滿足這些要求,為客戶提供高能效的參考設(shè)計(jì),幫助他們加快產(chǎn)品上市進(jìn)程。

          1) 隔離電源轉(zhuǎn)換:基于CS51021的隔離型5 A輸出網(wǎng)絡(luò)電源參考設(shè)計(jì)

          為目標(biāo)應(yīng)用選擇合適的電源拓?fù)浣Y(jié)構(gòu)和關(guān)鍵元件非常重要。一般而言,有幾項(xiàng)關(guān)鍵考慮因素,如輸入電壓范圍(及精度)、輸出電壓和電流、能效目標(biāo)、隔離要求和保護(hù)性能等。相應(yīng)的,這網(wǎng)絡(luò)電源參考設(shè)計(jì)相應(yīng)的目標(biāo)規(guī)范為:輸入電壓+48 V(精度±20%),輸出為5 V@5 A,提供限流、欠壓和過(guò)壓保護(hù),目標(biāo)能效高于85%,有隔離要求,且必須使用陶瓷電容。

          從上述目標(biāo)規(guī)范來(lái)看,我們可以看出其輸出功率要求相對(duì)較低,僅為25 W。而在15 W到100 W功率的通信應(yīng)用中,通常使用低成本的單端正激或反激轉(zhuǎn)換器。具體在本參考設(shè)計(jì)中,我們選擇正激轉(zhuǎn)換器,因?yàn)檫@種拓?fù)浣Y(jié)構(gòu)提供較高能效,可以采用小尺寸輸出濾波器,提供低紋波輸出,適合高密度板設(shè)計(jì),且輸出和輸出之間隔離。相應(yīng)地,可以采用安森美半導(dǎo)體的CS51021。

          CS51021是安森美半導(dǎo)體推出的一款固定頻率電流模式脈寬調(diào)制(PWM)控制器,提供構(gòu)建交流-直流(AC-DC)和DC-DC初級(jí)端控制電路所需的全部特性。這器件能夠配置為正激或反激拓?fù)浣Y(jié)構(gòu),提供高達(dá)1 MHz的開(kāi)關(guān)頻率,可用于優(yōu)化轉(zhuǎn)換器尺寸及其能效;具有1A的漏/源極門驅(qū)動(dòng)能力,適合高能效操作;具有可編程斜坡補(bǔ)償功能,提高了穩(wěn)定性。其它特性包括可編程逐脈沖過(guò)流保護(hù)、帶有前沿消隱的電流模式控制、具有可編程遲滯的過(guò)壓保護(hù)、雙向同步等。


          圖2:基于CS51021構(gòu)建的網(wǎng)絡(luò)交換機(jī)電源參考設(shè)計(jì)的主要規(guī)范。

          圖2顯示的是基于安森美半導(dǎo)體CS51021控制器構(gòu)建的網(wǎng)絡(luò)交換機(jī)電源的主要規(guī)范及演示電路板圖片??紤]到相關(guān)設(shè)備也可能會(huì)采用備用電池進(jìn)行工作,這參考設(shè)計(jì)提供的輸入電壓范圍比48 V±20%更寬,達(dá)到36 V至72 V。在能效方面,測(cè)試數(shù)據(jù)顯示,5.0 A輸出電流時(shí)的能效也高于85%,符合設(shè)計(jì)目標(biāo)要求。

          2) 隔離電源轉(zhuǎn)換:基于NCP1031的2 W偏置電源參考設(shè)計(jì)

          針對(duì)基站和網(wǎng)絡(luò)中的偏置電源應(yīng)用,我們假定其目標(biāo)規(guī)范為:輸入電壓+48 V、輸出電壓12 V、輸出功率2 W,目標(biāo)能效高于80%,有隔離要求。這些目標(biāo)規(guī)范要求應(yīng)用具有小尺寸和高功率密度,支持元件數(shù)量盡可能地少,并且具有寬輸入范圍,覆蓋+48 V電信應(yīng)用。

          針對(duì)這方面的應(yīng)用要求,我們可以采用安森美半導(dǎo)體的PWM控制器及電源開(kāi)關(guān)。實(shí)際上,及NCP1031是安森美半導(dǎo)體推出的一系列小型高壓?jiǎn)纹_(kāi)關(guān)穩(wěn)壓器,具有片上開(kāi)關(guān)及啟動(dòng)電路,能夠配置為正激或反激等單端拓?fù)浣Y(jié)構(gòu);其中,適合于需要高至3 W功率的應(yīng)用,而NCP1031適合于需要高至6 W功率的應(yīng)用,本參考設(shè)計(jì)中我們選擇的是NCP1030。

          NCP1030具有內(nèi)部啟動(dòng)穩(wěn)壓器,直接采用輸入電壓進(jìn)行供電,還集成門驅(qū)動(dòng)和200 V電源開(kāi)關(guān),降低了電磁干擾(EMI)。其中的電源開(kāi)關(guān)電路采用SENSEFET?技術(shù)來(lái)監(jiān)控漏電流(NCP1030的漏電流限制閾值為0.5 A),用于提升能效??偟膩?lái)說(shuō),NCP1030是一種集成方案,集成開(kāi)關(guān)管、PWM控制器及監(jiān)控電路。采用NCP1030實(shí)現(xiàn)的電信偏置電源占位面積僅為0.032平方英寸,相比較而言,采用TL384x和MAX6457A等競(jìng)爭(zhēng)器件實(shí)現(xiàn)的偏置電源占位面積達(dá)0.344平方英寸,如圖3所示。


          圖3:基于NCP1030的偏置電源比其他解決方案節(jié)省超過(guò)90%的占位面積。

          測(cè)試數(shù)據(jù)顯示,基于NCP1030的偏置電源實(shí)現(xiàn)高于80%的能效,線路穩(wěn)壓精度和負(fù)載穩(wěn)壓精度分別達(dá)到0.5%和8%,適合48 V輸入電壓,提供12 V輸出電壓入2 W輸出功率,并采用反激拓?fù)浣Y(jié)構(gòu),符合目標(biāo)規(guī)范要求。

          3) 非隔離電源轉(zhuǎn)換:基于NCP3121的電信負(fù)載點(diǎn)電源參考設(shè)計(jì)

          分布式電源系統(tǒng)一種常見(jiàn)的電源分配方法是先將48 V電壓先轉(zhuǎn)換為12 V電壓,再通過(guò)負(fù)載點(diǎn)(POL)轉(zhuǎn)換器將12 V電壓轉(zhuǎn)換為負(fù)載所需的電壓,常見(jiàn)的有5.0 V和3.3 V等。相應(yīng)地,我們假定這POL電源參考設(shè)計(jì)的規(guī)范為:輸入電壓+12 V(精度±10%),兩路輸出分別為5.0 V@3 A和3.3 V@3 A,能效高于80%,無(wú)隔離要求,小尺寸及高功率密度等。


          圖4:NCP3121內(nèi)置自動(dòng)追蹤和排序功能,無(wú)須使用外部排序器

          電信應(yīng)用中的負(fù)載點(diǎn)(POL)轉(zhuǎn)換器會(huì)涉及到為DSP、ASIC、FPGA或CPU等敏感電路供電,需要提供不同負(fù)載所需的不同電壓,并且具有上電和掉電排序能力,還需要具有小尺寸和高功率密度,能夠提供大批量、低成本的解決方案。相應(yīng)地,我們可以采用安森美半導(dǎo)體的NCP3121集成雙路3 A降壓穩(wěn)壓器。這器件設(shè)計(jì)用于需要高能效的低壓應(yīng)用,能夠產(chǎn)生低至0.8 V的輸出電壓。這器件具有200 kHz至750 kHz的可調(diào)節(jié)開(kāi)關(guān)頻率(由外部電阻設(shè)定),具有寬溫度范圍的精密內(nèi)部參考,采用改善熱性能的QFN封裝。NCP3121能夠作為獨(dú)立開(kāi)關(guān)轉(zhuǎn)換器操作,同時(shí)內(nèi)置自動(dòng)追蹤和排序特性,保護(hù)上電和掉電的排序,防止錯(cuò)誤數(shù)據(jù)加載至輸入/輸出(I/O)緩沖器,保護(hù)ASIC等免受損傷,如圖4所示。NCP3121內(nèi)置的自動(dòng)追蹤和排序能力,消除了使用外部電源排序芯片來(lái)管理這項(xiàng)功能并保證性能的需要。

          基于NCP3121的雙路輸出3 A/3 A電信負(fù)載點(diǎn)電源參考設(shè)計(jì)采用降壓拓?fù)浣Y(jié)構(gòu),支持10.8 V至13.2 V的輸入電壓,提供5.0 V@3 A和3.3 V@3 A兩路輸出,符合于xDSL等電信負(fù)載點(diǎn)電源應(yīng)用要求。

          安森美半導(dǎo)體針對(duì)電信和網(wǎng)絡(luò)應(yīng)用提供完整解決方案。安森美半導(dǎo)體公司廣泛的產(chǎn)品系列包括電源、模擬、數(shù)字信號(hào)處理器(DSP)、混合信號(hào)、先進(jìn)邏輯、時(shí)鐘管理、非易失性存儲(chǔ)器和標(biāo)準(zhǔn)元器件。在電信和網(wǎng)絡(luò)應(yīng)用方面,安森美半導(dǎo)體提供完整解決方案,除了上述DC-DC電源解決方案及高能效的參考設(shè)計(jì),還包括時(shí)鐘分配、時(shí)鐘產(chǎn)生、射極耦合邏輯(ECL)邏輯、運(yùn)算放大器、比較器、信號(hào)和接口、浪涌保護(hù)和靜電放電(ESD)保護(hù)等,輔以高效的供應(yīng)商和高質(zhì)量的制造,更加全面地滿足客戶需求,幫助他們?cè)谑袌?chǎng)競(jìng)爭(zhēng)中占據(jù)先機(jī)。



          關(guān)鍵詞: 電信技術(shù) DC-DC DPS NCP1030

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();