衛(wèi)星導航知識
1.什么是全球定位系統(tǒng)(GPS)
全球定位系統(tǒng)(Global Positioning System - GPS)是美國從上世紀70年代開始研制,歷時20年,耗資200億美元,于1994年全面建成,具有在海、陸、空進行全方位實時三維導航與定位能力的新一代衛(wèi)星導航與定位系統(tǒng)。經(jīng)近10年我國測繪等部門的使用表明,GPS以全天候、高精度、 自動化、高效益等顯著特點,贏得廣大測繪工作者的信賴,并成功地應用于大地測量、工程測量、航空攝影測量、運載工具導航和管制、地殼運動監(jiān)測、工程變形監(jiān)測、資源勘察、地球動力學等多種學科,從而給測繪領域帶來一場深刻的技術革命。
全球定位系統(tǒng)(Global Positioning System,縮寫GPS)是美國第二代衛(wèi)星導航系統(tǒng)。是在子午儀衛(wèi)星導航系統(tǒng)的基礎上發(fā)展起來的,它采納了子午儀系統(tǒng)的成功經(jīng)驗。和子午儀系統(tǒng)一樣,全球定位系統(tǒng)由空間部分、地面監(jiān)控部分和用戶接收機三大部分組成。
按目前的方案,全球定位系統(tǒng)的空間部分使用24顆高度約2.02萬千米的衛(wèi)星組成衛(wèi)星星座。21+3顆衛(wèi)星均為近圓形軌道,運行周期約為11小時58分,分布在六個軌道面上(每軌道面四顆),軌道傾角為55度。衛(wèi)星的分布使得在全球的任何地方,任何時間都可觀測到四顆以上的衛(wèi)星,并能保持良好定位解算精度的幾何圖形(DOP)。這就提供了在時間上連續(xù)的全球導航能力。
地面監(jiān)控部分包括四個監(jiān)控間、一個上行注入站和一個主控站。監(jiān)控站設有GPS用戶接收機、原子鐘、收集當?shù)貧庀髷?shù)據(jù)的傳感器和進行數(shù)據(jù)初步處理的計算機。監(jiān)控站的主要任務是取得衛(wèi)星觀測數(shù)據(jù)并將這些數(shù)據(jù)傳送至主控站。主控站設在范登堡空軍基地。它對地面監(jiān)控部實行全面控制。主控站主要任務是收集各監(jiān)控站對GPS衛(wèi)星的全部觀測數(shù)據(jù),利用這些數(shù)據(jù)計算每顆GPS衛(wèi)星的軌道和衛(wèi)星鐘改正值。上行注入站也設在范登堡空軍基地。它的任務主要是在每顆衛(wèi)星運行至上空時把這類導航數(shù)據(jù)及主控站的指令注入到衛(wèi)星。這種注入對每顆GPS衛(wèi)星每天進行一次,并在衛(wèi)星離開注入站作用范圍之前進行最后的注入。
全球定位系統(tǒng)具有性能好、精度高、應用廣的特點,是迄今最好的導航定位系統(tǒng)。隨著全球定位系統(tǒng)的不斷改進,硬、軟件的不斷完善,應用領域正在不斷地開拓, 目前已遍及國民經(jīng)濟各種部門,并開始逐步深入人們的日常生活。
2.GPS如何定位
GPS接收機可接收到可用于授時的準確至納秒級的時間信息;用于預報未來幾個月內衛(wèi)星所處概略位置的預報星歷;用于計算定位時所需衛(wèi)星坐標的廣播星歷,精度為幾米至幾十米(各個衛(wèi)星不同,隨時變化);以及GPS系統(tǒng)信息,如衛(wèi)星狀況等。
GPS接收機對碼的量測就可得到衛(wèi)星到接收機的距離,由于含有接收機衛(wèi)星鐘的誤差及大氣傳播誤差,故稱為偽距。對0A碼測得的偽距稱為UA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
GPS接收機對收到的衛(wèi)星信號,進行解碼或采用其它技術,將調制在載波上的信息去掉后,就可以恢復載波。嚴格而言,載波相位應被稱為載波拍頻相位,它是收到的受多普勒頻 移影響的衛(wèi)星信號載波相位與接收機本機振蕩產生信號相位之差。一般在接收機鐘確定的歷元時刻量測,保持對衛(wèi)星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛(wèi)星振蕩器的相位初值是不知道的,起始歷元的相位整數(shù)也是不知道的,即整周模糊度,只能在數(shù)據(jù)處理中作為參數(shù)解算。相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、并有一段連續(xù)觀測值時才能使用相位觀測值,而要達到優(yōu)于米級的定位 精度也只能采用相位觀測值。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據(jù)一臺接收機的觀測數(shù)據(jù)來確定接收機位置的方式,它只能采用偽距觀測量,可用于車船等的概略導航定位。相對定位(差分定位)是根據(jù)兩臺以上接收機的觀測數(shù)據(jù)來確定觀測點之間的相對位置的方法,它既可采用偽距觀測量也可采用相位觀測量,大地測量或工程測量均應采用相位觀測值進行相對定位。
在GPS觀測量中包含了衛(wèi)星和接收機的鐘差、大氣傳播延遲、多路徑效應等誤差,在定位計算時還要受到衛(wèi)星廣播星歷誤差的影響,在進行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據(jù)兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠時(大氣有明顯差別),應選用雙頻接收機。
在定位觀測時,若接收機相對于地球表面運動,則稱為動態(tài)定位,如用于車船等概略導航定位的精度為30一100米的偽距單點定位,或用于城市車輛導航定位的米級精度的偽距差分定位,或用于測量放樣等的厘米級 的相位差分定位(RTK),實時差分定位需要數(shù)據(jù)鏈將 兩個或多個站的觀測數(shù)據(jù)實時傳輸?shù)揭黄鹩嬎恪?在定位觀測時,若接收機相對于地球表面靜止,則稱為靜態(tài)定位,在進行控制網(wǎng)觀測時,一般均采用這種 方式由幾臺接收機同時觀測,它能最太限度地發(fā)揮GPS的定位精度,專用于 這種目的的接收機被稱為大地型接 收機,是接收機中性能最好的一類。目前,GPS已經(jīng)能 夠達到地殼形變觀測的精度要求,IGS的常年觀測臺站已 經(jīng)能構成毫米級的全球坐標框架。
3.GPS系統(tǒng)如何組成
GPS系統(tǒng)包括三大部分:空間部分—GPS衛(wèi)星星座;地面控制部分—地面監(jiān)控系統(tǒng);用戶設備部分—GPS信號接收機。
GPS衛(wèi)星星座
GPS工作衛(wèi)星及其星座 由21顆工作衛(wèi)星和3顆在軌備用衛(wèi)星組成GPS衛(wèi)星星座,記作(21+3)GPS星座。 24顆衛(wèi)星均勻分布在6個軌道平面內,軌道傾角為55度,各個軌道平面之間相距60度, 即軌道的升交點赤經(jīng)各相差60度。每個軌道平面內各顆衛(wèi)星之間的升交角距相差90度, 一軌道平面上的衛(wèi)星比西邊相鄰軌道平面上的相應衛(wèi)星超前30度。
在兩萬公里高空的GPS衛(wèi)星,當?shù)厍驅阈莵碚f自轉一周時,它們繞地球運行二周, 即繞地球一周的時間為12恒星時。這樣,對于地面觀測者來說,每天將提前4分鐘見到同一顆GPS 衛(wèi)星。位于地平線以上的衛(wèi)星顆數(shù)隨著時間和地點的不同而不同,最少可見到4顆, 最多可見到11顆。在用GPS信號導航定位時,為了結算測站的三維坐標,必須觀測4顆 GPS衛(wèi)星,稱為定位星座。這4顆衛(wèi)星在觀測過程中的幾何位置分布對定位精度有一定的影響。對于某地某時,甚至不能測得精確的點位坐標,這種時間段叫做“間隙段”。但這種 時間間隙段是很短暫的,并不影響全球絕大多數(shù)地方的全天候、高精度、連續(xù)實時牡己蕉ㄎ徊飭俊?GPS工作衛(wèi)星的編號和試驗衛(wèi)星基本相同。
地面監(jiān)控系統(tǒng)
對于導航定位來說,GPS衛(wèi)星是一動態(tài)已知點。星的位置是依據(jù)衛(wèi)星發(fā)射的星歷—描述衛(wèi)星運動及其軌道的 的參數(shù)算得的。每顆GPS衛(wèi)星所播發(fā)的星歷,是由地面監(jiān)控系統(tǒng)提供的。衛(wèi)星上的各種設備是否正常 工作,以及衛(wèi)星是否一直沿著預定軌道運行,都要由地面設備進行監(jiān)測和控制。地面監(jiān)控系統(tǒng) 另一重要作用是保持各顆衛(wèi)星處于同一時間標準—GPS時間系統(tǒng)。這就需要地面站監(jiān)測 各顆衛(wèi)星的時間,求出鐘差。然后由地面注入站發(fā)給衛(wèi)星,衛(wèi)星再由導航電文發(fā)給用戶設備。 GPS工作衛(wèi)星的地面監(jiān)控系統(tǒng)包括一個主控站、三個注入站和五個監(jiān)測站。
GPS信號接收機
GPS 信號接收機的任務是:能夠捕獲到按一定衛(wèi)星高度截止角所選擇的待測衛(wèi)星的信號, 并跟蹤這些衛(wèi)星的運行,對所接收到的GPS信號進行變換、放大和處理,以便測量出GPS信號從衛(wèi)星 到接收機天線的傳播時間,解譯出GPS衛(wèi)星所發(fā)送的導航電文,實時地計算出測站的三維位置, 位置,甚至三維速度和時間。
靜態(tài)定位中,GPS接收機在捕獲和跟蹤GPS衛(wèi)星的過程中固定不變,接收機高精度 地測量GPS信號的傳播時間,利用GPS衛(wèi)星在軌的已知位置,解算出接收機天線所在位置的 三維坐標。而動態(tài)定位則是用GPS接收機測定一個運動物體的運行軌跡。GPS信號接收機 所位于的運動物體叫做載體(如航行中的船艦,空中的飛機,行走的車輛等)。載體上 的GPS接收機天線在跟蹤GPS衛(wèi)星的過程中相對地球而運動,接收機用GPS信號實時地 測得運動載體的狀態(tài)參數(shù)(瞬間三維位置和三維速度)。
接收機硬件和機內軟件以及GPS數(shù)據(jù)的后處理軟件包,構成完整的GPS用戶設備。GPS接收機的結構 分為天線單元和接收單元兩大部分。對于測地型接收機來說,兩個單元一般分成 兩個獨立的部件,觀測時將天線單元安置在測站上,接收單元置于測站附近的適當?shù)胤剑?用電纜線將兩者連接成一個整機。也有的將天線單元和接收單元制作成一個整體,觀測時將其 安置在測站點上。
GPS接收機一般用蓄電池做電源。同時采用機內機外兩種直流電源。設置機內電池的目的 在于更換外電池時不中斷連續(xù)觀測。在用機外電池的過程中,機內電池自動充電。 關機后,機內電池為RAM存儲器供電,以防止丟失數(shù)據(jù)。
近幾年,國內引進了許多種類型的GPS測地型接收機。各種類型的GPS測地型接收機用于 精密相對定位時,其雙頻接收機精度可達5mm+1PPM.D,單頻接收機在一定距離內精度可達 10mm+2PPM.D。用于差分定位其精度可達亞米級至厘米級。 目前,各種類型的GPS接收機體積越來越小,重量越來越輕,便于野外觀測。GPS和GLONASS 兼容的全球導航定位系統(tǒng)接收機已經(jīng)問世。
4.GPS接收機如何分類
GPS衛(wèi)星發(fā)送的導航定位信號,是一種可供無數(shù)用戶共享的信息資源。對于陸地、 海洋和空間的廣大用戶,只要用戶擁有能夠接收、跟蹤、變換和測量GPS信號的接收設備, 即GPS信號接收機??梢栽谌魏螘r候用GPS信號進行導航定位測量。根據(jù)使用目的的不同, 用戶要求的GPS信號接收機也各有差異。目前世界上已有幾十家工廠生產GPS接收機, 產品也有幾百種。這些產品可以按照原理、用途、功能等來分類。
按接收機的用途分類
導航型接收機 此類型接收機主要用于運動載體的導航,它可以實時給出載體的位置和速度。這類接收機 一般采用C/A碼偽距測量,單點實時定位精度較低,一般為±25mm,有SA影響時為±100mm。 這類接收機價格便宜,應用廣泛。根據(jù)應用領域的不同,此類接收機還可以進一步分為: 車載型——用于車輛導航定位; 航海型——用于船舶導航定位; 航空型——用于飛機導航定位。由于飛機運行速度快,因此,在航空上用的接收機 要求能適應高速運動。 星載型——用于衛(wèi)星的導航定位。由于衛(wèi)星的速度高達7km/s以上,因此對接收機的要求更高。
測地型接收機
測地型接收機主要用于精密大地測量和精密工程測量。定位精度高。儀器結構復雜,價格較貴。 授時型接收機 這類接收機主要利用GPS衛(wèi)星提供的高精度時間標準進行授時,常用于天文臺及無線電通訊中時間同步。
按接收機的載波頻率分類
單頻接收機 單頻接收機只能接收L1載波信號,測定載波相位觀測值進行定位。由于不能有效消除 電離層延遲影響,單頻接收機只適用于短基線(15km)的精密定位。
雙頻接收機 雙頻接收機可以同時接收L1,L2載波信號。利用雙頻對電離層延遲的不一樣,可以消除電離層 對電磁波信號的延遲的影響,因此雙頻接收機可用于長達幾千公里的精密定位。
按接收機通道數(shù)分類
GPS接收機能同時接收多顆GPS衛(wèi)星的信號,為了分離接收到的不同衛(wèi)星的信號,以實現(xiàn)對衛(wèi)星信號的跟蹤、處理和量測,具有這樣功能的器件稱為天線信號通道。根據(jù)接收機所具有的通道種類可分為: 多通道接收機 序貫通道接收機 多路多用通道接收機
按接收機工作原理分類
碼相關型接收機 碼相關型接收機是利用碼相關技術得到偽距觀測值。
平方型接收機 平方型接收機是利用載波信號的平方技術去掉調制信號,來恢復完整的載波信號 通過相位計測定接收機內產生的載波信號與接收到的載波信號之間的相位差,測定偽距觀測值。
混合型接收機 這種儀器是綜合上述兩種接收機的優(yōu)點,既可以得到碼相位偽距,也可以得到載波相位觀測值。
干涉型接收機 這種接收機是將GPS衛(wèi)星作為射電源,采用干涉測量方法,測定兩個測站間距離。
評論