Linux2.6內核驅動移植參考
Linux2.6內核驅動移植參考
作者:晏渭川
隨著Linux2.6的發(fā)布,由于2.6內核做了教的改動,各個設備的驅動程序在不同程度上要
進行改寫。為了方便各位Linux愛好者我把自己整理的這分文檔share出來。該文當列舉
了2.6內核同以前版本的絕大多數(shù)變化,可惜的是由于時間和精力有限沒有詳細列出各個
函數(shù)的用法。
特別聲明:該文檔中的內容來自http:/lwn.net,該網也上也有各個函數(shù)的較為詳細的
說明可供各位參考。如果需要該文檔的word版的朋友, 請mail到weiriver@sohu.com索
取。
1、 使用新的入口
必須包含 linux/init.h>
module_init(your_init_func);
module_exit(your_exit_func);
老版本:int init_module(void);
void cleanup_module(voi);
2.4中兩種都可以用,對如后面的入口函數(shù)不必要顯示包含任何頭文件。
2、 GPL
MODULE_LICENSE("Dual BSD/GPL");
老版本:MODULE_LICENSE("GPL");
3、 模塊參數(shù)
必須顯式包含linux/moduleparam.h>
module_param(name, type, perm);
module_param_named(name, value, type, perm);
參數(shù)定義
module_param_string(name, string, len, perm);
module_param_array(name, type, num, perm);
老版本:MODULE_PARM(variable,type);
MODULE_PARM_DESC(variable,type);
4、 模塊別名
MODULE_ALIAS("alias-name");
這是新增的,在老版本中需在/etc/modules.conf配置,現(xiàn)在在代碼中就可以實現(xiàn)。
5、 模塊計數(shù)
int try_module_get(module);
module_put();
老版本:MOD_INC_USE_COUNT 和 MOD_DEC_USE_COUNT
6、 符號導出
只有顯示的導出符號才能被其他模塊使用,默認不導出所有的符號,不必使用EXPORT_NO
_SYMBOLS
老板本:默認導出所有的符號,除非使用EXPORT_NO_SYMBOLS
7、 內核版本檢查
需要在多個文件中包含linux/module.h>時,不必定義__NO_VERSION__
老版本:在多個文件中包含linux/module.h>時,除在主文件外的其他文件中必須定義_
_NO_VERSION__,防止版本重復定義。
8、 設備號
kdev_t被廢除不可用,新的dev_t拓展到了32位,12位主設備號,20位次設備號。
unsigned int iminor(struct inode *inode);
unsigned int imajor(struct inode *inode);
老版本:8位主設備號,8位次設備號
int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);
9、 內存分配頭文件變更
所有的內存分配函數(shù)包含在頭文件linux/slab.h>,而原來的linux/malloc.h>不存在
老版本:內存分配函數(shù)包含在頭文件linux/malloc.h>
10、 結構體的初試化
gcc開始采用ANSI C的struct結構體的初始化形式:
static struct some_structure = {
.field1 = value,
.field2 = value,
..
};
老版本:非標準的初試化形式
static struct some_structure = {
field1: value,
field2: value,
..
};
11、 用戶模式幫助器
int call_usermodehelper(char *path, char **argv, char **envp,
int wait);
新增wait參數(shù)
12、 request_module()
request_module("foo-device-%d", number);
老版本:
char module_name[32];
printf(module_name, "foo-device-%d", number);
request_module(module_name);
13、 dev_t引發(fā)的字符設備的變化
1、取主次設備號為
unsigned iminor(struct inode *inode);
unsigned imajor(struct inode *inode);
2、老的register_chrdev()用法沒變,保持向后兼容,但不能訪問設備號大于256的設備
。
3、新的接口為
a)注冊字符設備范圍
int register_chrdev_region(dev_t from, unsigned count, char *name);
b)動態(tài)申請主設備號
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, char
*name);
看了這兩個函數(shù)郁悶吧^_^!怎么和file_operations結構聯(lián)系起來???別急!
c)包含 linux/cdev.h>,利用struct cdev和file_operations連接
struct cdev *cdev_alloc(void);
void cdev_init(struct cdev *cdev, struct file_operations *fops);
int cdev_add(struct cdev *cdev, dev_t dev, unsigned count);
(分別為,申請cdev結構,和fops連接,將設備加入到系統(tǒng)中!好復雜?。。?
d)void cdev_del(struct cdev *cdev);
只有在cdev_add執(zhí)行成功才可運行。
e)輔助函數(shù)
kobject_put(cdev->kobj);
struct kobject *cdev_get(struct cdev *cdev);
void cdev_put(struct cdev *cdev);
這一部分變化和新增的/sys/dev有一定的關聯(lián)。
14、 新增對/proc的訪問操作
linux/seq_file.h>
以前的/proc中只能得到string, seq_file操作能得到如long等多種數(shù)據(jù)。
相關函數(shù):
static struct seq_operations 必須實現(xiàn)這個類似file_operations得數(shù)據(jù)中得各個成
員函數(shù)。
seq_printf();
int seq_putc(struct seq_file *m, char c);
int seq_puts(struct seq_file *m, const char *s);
int seq_escape(struct seq_file *m, const char *s, const char *esc);
int seq_path(struct seq_file *m, struct vfsmount *mnt,
struct dentry *dentry, char *esc);
seq_open(file, ct_seq_ops);
等等
15、 底層內存分配
1、linux/malloc.h>頭文件改為linux/slab.h>
2、分配標志GFP_BUFFER被取消,取而代之的是GFP_NOIO 和 GFP_NOFS
3、新增__GFP_REPEAT,__GFP_NOFAIL,__GFP_NORETRY分配標志
4、頁面分配函數(shù)alloc_pages(),get_free_page()被包含在linux/gfp.h>中
5、對NUMA系統(tǒng)新增了幾個函數(shù):
a) struct page *alloc_pages_node(int node_id,
unsigned int gfp_mask,
unsigned int order);
b) void free_hot_page(struct page *page);
c) void free_cold_page(struct page *page);
6、 新增Memory pools
linux/mempool.h>
mempool_t *mempool_create(int min_nr,
mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn,
void *pool_data);
void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);
16、 per-CPU變量
get_cpu_var();
put_cpu_var();
void *alloc_percpu(type);
void free_percpu(const void *);
per_cpu_ptr(void *ptr, int cpu)
get_cpu_ptr(ptr)
put_cpu_ptr(ptr)
老版本使用
DEFINE_PER_CPU(type, name);
EXPORT_PER_CPU_SYMBOL(name);
EXPORT_PER_CPU_SYMBOL_GPL(name);
DECLARE_PER_CPU(type, name);
DEFINE_PER_CPU(int, mypcint);
2.6內核采用了可剝奪得調度方式這些宏都不安全。
17、 內核時間變化
1、現(xiàn)在的各個平臺的HZ為
Alpha: 1024/1200; ARM: 100/128/200/1000; CRIS: 100; i386: 1000; IA-64:
1024; M68K: 100; M68K-nommu: 50-1000; MIPS: 100/128/1000; MIPS64: 100;
PA-RISC: 100/1000; PowerPC32: 100; PowerPC64: 1000; S/390: 100; SPARC32:
100; SPARC64: 100; SuperH: 100/1000; UML: 100; v850: 24-100; x86-64: 1000.
2、由于HZ的變化,原來的jiffies計數(shù)器很快就溢出了,引入了新的計數(shù)器jiffies_64
3、#include linux/jiffies.h>
u64 my_time = get_jiffies_64();
4、新的時間結構增加了納秒成員變量
struct timespec current_kernel_time(void);
5、他的timer函數(shù)沒變,新增
void add_timer_on(struct timer_list *timer, int cpu);
6、新增納秒級延時函數(shù)
ndelay();
7、POSIX clocks 參考kernel/posix-timers.c
18、 工作隊列(workqueue)
1、任務隊列(task queue )接口函數(shù)都被取消,新增了workqueue接口函數(shù)
struct workqueue_struct *create_workqueue(const char *name);
DECLARE_WORK(name, void (*function)(void *), void *data);
INIT_WORK(struct work_struct *work,
void (*function)(void *), void *data);
PREPARE_WORK(struct work_struct *work,
void (*function)(void *), void *data);
2、申明struct work_struct結構
int queue_work(struct workqueue_struct *queue,
struct work_struct *work);
int queue_delayed_work(struct workqueue_struct *queue,
struct work_struct *work,
unsigned long delay);
int cancel_delayed_work(struct work_struct *work);
void flush_workqueue(struct workqueue_struct *queue);
void destroy_workqueue(struct workqueue_struct *queue);
int schedule_work(struct work_struct *work);
int schedule_delayed_work(struct work_struct *work, unsigned long
delay);
19、 新增創(chuàng)建VFS的"libfs"
libfs給創(chuàng)建一個新的文件系統(tǒng)提供了大量的API.
主要是對struct file_system_type的實現(xiàn)。
參考源代碼:
drivers/hotplug/pci_hotplug_core.c
drivers/usb/core/inode.c
drivers/oprofile/oprofilefs.c
fs/ramfs/inode.c
fs/nfsd/nfsctl.c (simple_fill_super() example)
20、 DMA的變化
未變化的有:
void *pci_alloc_consistent(struct pci_dev *dev, size_t size,
dma_addr_t *dma_handle);
void pci_free_consistent(struct pci_dev *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
變化的有:
1、 void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, int flag);
void dma_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
2、列舉了映射方向:
enum dma_data_direction {
DMA_BIDIRECTIONAL = 0,
DMA_TO_DEVICE = 1,
DMA_FROM_DEVICE = 2,
DMA_NONE = 3,
};
3、單映射
dma_addr_t dma_map_single(struct device *dev, void *addr,
size_t size,
enum dma_data_direction direction);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size,
enum dma_data_direction direction);
4、頁面映射
dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction);
void dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size,
enum dma_data_direction direction);
5、有關scatter/gather的函數(shù):
int dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction);
void dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nhwentries, enum dma_data_direction direction);
6、非一致性映射(Noncoherent DMA mappings)
void *dma_alloc_noncoherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, int flag);
void dma_sync_single_range(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction);
void dma_free_noncoherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
7、DAC (double address cycle)
int pci_dac_set_dma_mask(struct pci_dev *dev, u64 mask);
void pci_dac_dma_sync_single(struct pci_dev *dev,
dma64_addr_t dma_addr,
size_t len, int direction);
21、 互斥
新增seqlock主要用于:
1、少量的數(shù)據(jù)保護
2、數(shù)據(jù)比較簡單(沒有指針),并且使用頻率很高
3、對不產生任何副作用的數(shù)據(jù)的訪問
4、訪問時寫者不被餓死
linux/seqlock.h>
初始化
seqlock_t lock1 = SEQLOCK_UNLOCKED;
或seqlock_t lock2; seqlock_init(lock2);
void write_seqlock(seqlock_t *sl);
void write_sequnlock(seqlock_t *sl);
int write_tryseqlock(seqlock_t *sl);
void write_seqlock_irqsave(seqlock_t *sl, long flags);
void write_sequnlock_irqrestore(seqlock_t *sl, long flags);
void write_seqlock_irq(seqlock_t *sl);
void write_sequnlock_irq(seqlock_t *sl);
void write_seqlock_bh(seqlock_t *sl);
void write_sequnlock_bh(seqlock_t *sl);
unsigned int read_seqbegin(seqlock_t *sl);
int read_seqretry(seqlock_t *sl, unsigned int iv);
unsigned int read_seqbegin_irqsave(seqlock_t *sl, long flags);
int read_seqretry_irqrestore(seqlock_t *sl, unsigned int iv, long
flags);
22、 內核可剝奪
linux/preempt.h>
preempt_disable();
preempt_enable_no_resched();
preempt_enable_noresched();
preempt_check_resched();
23、 眠和喚醒
1、原來的函數(shù)可用,新增下列函數(shù):
prepare_to_wait_exclusive();
prepare_to_wait();
2、等待隊列的變化
typedef int (*wait_queue_func_t)(wait_queue_t *wait,
unsigned mode, int sync);
void init_waitqueue_func_entry(wait_queue_t *queue,
wait_queue_func_t func);
24、 新增完成事件(completion events)
linux/completion.h>
init_completion(my_comp);
void wait_for_completion(struct completion *comp);
void complete(struct completion *comp);
void complete_all(struct completion *comp);
25、 RCU(Read-copy-update)
rcu_read_lock();
void call_rcu(struct rcu_head *head, void (*func)(void *arg),
void *arg);
26、 中斷處理
1、中斷處理有返回值了。
IRQ_RETVAL(handled);
2、cli(), sti(), save_flags(), 和 restore_flags()不再有效,應該使用local_save
_flags() 或local_irq_disable()。
3、synchronize_irq()函數(shù)有改動
4、新增int can_request_irq(unsigned int irq, unsigned long flags);
5、 request_irq() 和free_irq() 從 linux/sched.h>改到了 linux/interrupt.h>
27、 異步I/O(AIO)
linux/aio.h>
ssize_t (*aio_read) (struct kiocb *iocb, char __user *buffer,
size_t count, loff_t pos);
ssize_t (*aio_write) (struct kiocb *iocb, const char __user *buffer,
size_t count, loff_t pos);
int (*aio_fsync) (struct kiocb *, int datasync);
新增到了file_operation結構中。
is_sync_kiocb(struct kiocb *iocb);
int aio_complete(struct kiocb *iocb, long res, long res2);
28、 網絡驅動
1、struct net_device *alloc_netdev(int sizeof_priv, const char *name,
void (*setup)(struct net_device *));
struct net_device *alloc_etherdev(int sizeof_priv);
2、新增NAPI(New API)
void netif_rx_schedule(struct net_device *dev);
void netif_rx_complete(struct net_device *dev);
int netif_rx_ni(struct sk_buff *skb);
(老版本為netif_rx())
29、 USB驅動
老版本struct usb_driver取消了,新的結構體為
struct usb_class_driver {
char *name;
struct file_operations *fops;
mode_t mode;
int minor_base;
};
int usb_submit_urb(struct urb *urb, int mem_flags);
int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);
30、 block I/O 層
這一部分做的改動最大。不祥敘。
31、 mmap()
int remap_page_range(struct vm_area_struct *vma, unsigned long from,
unsigned long to, unsigned long size,
pgprot_t prot);
int io_remap_page_range(struct vm_area_struct *vma, unsigned long from,
unsigned long to, unsigned long size,
pgprot_t prot);
struct page *(*nopage)(struct vm_area_struct *area,
unsigned long address,
int *type);
int (*populate)(struct vm_area_struct *area, unsigned long address,
unsigned long len, pgprot_t prot, unsigned long pgoff,
int nonblock);
int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, struct page *page,
pgprot_t prot);
struct page *vmalloc_to_page(void *address);
32、 零拷貝塊I/O(Zero-copy block I/O)
struct bio *bio_map_user(struct block_device *bdev,
unsigned long uaddr,
unsigned int len,
int write_to_vm);
void bio_unmap_user(struct bio *bio, int write_to_vm);
int get_user_pages(struct task_struct *task,
struct mm_struct *mm,
unsigned long start,
int len,
int write,
int force,
struct page **pages,
struct vm_area_struct **vmas);
33、 高端內存操作kmaps
void *kmap_atomic(struct page *page, enum km_type type);
void kunmap_atomic(void *address, enum km_type type);
struct page *kmap_atomic_to_page(void *address);
老版本:kmap() 和 kunmap()。
34、 驅動模型
主要用于設備管理。
1、 sysfs
2、 Kobjects
推薦文章:
http:/www-900.ibm.com/developerWorks/cn/linux/kernel/l-kernel26/index.shtml
http:/www-900.ibm.com/developerWorks/cn/linux/l-inside/index.shtml
2.6里不需要再定義“__KERNEL__”和“MODULE”了。
用下面的Makefile文件編譯:
代碼: |
obj-m := hello.o KDIR := /lib/modules/$(shell uname -r)/build PWD := $(shell pwd) default: $(MAKE) -C $(KDIR) M=$(PWD) modules |
linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)
評論