簡單介紹FBG光學傳感器
在這種方法中,會用一個廣譜的光源照射FBG傳感器 (或者一系列FBG傳感器)。這些反射光束會通過一個分散性單元,分散性單元會將波長不同的反射光束分別分配到電荷耦合器件(CCD)表面不同的位置上去。如下圖5所示。
圖5. 使用波長位置轉換法探詢FBG光學傳感器
這種方法可以快速并且同時地對掛接在光纖上的所有FBG傳感器進行測量,但是它只提供了非常有限的分辨率以及信噪比 (SNR)。舉例來說,如果我們希望在80納米的波長范圍中實現(xiàn)1皮米的分辨率,那么我們需要一個包含80,000個像素點的線性CCD器件,這個像素指標已經比目前在市面上能夠找到的最好的線性CCD器件 (截至2010年7月) 的指標高出了10倍以上。另外,因為廣譜光源的能量是被分散到一個很廣的波長范圍中,所以FBG反射光束的能量會非常小,有時候甚至會給測量帶來困難。
目前最流行的方法是利用一個可調法珀濾波器來創(chuàng)造一束具有高能量,并且能夠快速掃頻的激光源來代替?zhèn)鹘y(tǒng)的廣譜的光源。可調的激光源將能量集中在一個很窄的波長范圍里面,提供了一個具有很高信噪比的高能量的光源。這種體系結構提供的高光學功率讓使用一條光纖掛載多個光學通道成為可能,這樣就能有效地減少多通道探詢器的成本并且降低系統(tǒng)的復雜度?;谶@種可調激光架構的探詢器可以在一個相對大的波長范圍里面以很窄的光譜帶進行掃描,另一方面,一臺光探測器將與這個掃描同步,測量從FBG傳感器反射回來的激光束。當可調激光器發(fā)射的激光波長與FBG傳感器的布拉格波長吻合的時候,光探測器就能測量到相應的響應。該響應發(fā)生的時候可調激光的波長就對應了此時FBG傳感器處測得的溫度以及/或者應變,如圖 6所示。
圖6. 用可調激光源法探詢FBG光學傳感器
使用這種方法進行探詢可以達到大概1皮米的精度,對應到傳統(tǒng)FBG傳感器的精度即是約1.2微應變(FBG應變傳感器)或約0.1攝氏度(FBG溫度傳感器)。因為可調激光源法相對于其它的方法來說具有很高的光學功率,所以這種探詢法還可以適用于光纖長度更大 (超過10千米) 的測量應用中。
FBG光學傳感器的優(yōu)勢
通過使用光波代替電流以及使用標準光纖代替銅線作為傳輸介質,F(xiàn)BG光學傳感解決了許多使用電氣傳感需要面臨的挑戰(zhàn)和解決的困難。光纖和FBG光學傳感器都是絕緣體,具有被動性電學特性,并且不受電磁感應噪聲的影響。具有高光學功率可調激光源的探詢器可以以很低的數(shù)據(jù)丟失率甚至是零丟失來完成長距離的測量。同時,與電氣傳感器系統(tǒng)不同,一個光學通道可以同時完成多個FBG傳感器的測試,極大地減小了測試系統(tǒng)的體積,重量以及復雜度。
在一些外部環(huán)境條件惡劣的應用現(xiàn)場中,一些常用的電氣傳感器,例如箔應變片,熱電偶,以及振弦式傳感器已經很難使用甚至已經失效的情況下,光學傳感器是一個非常理想的解決辦法。因為光學傳感器的用途以及安裝方法和這些傳統(tǒng)的電氣傳感器類似,所以從電氣測試方案過渡到光學測試方案會相對簡單。如果能夠對光纖和FBG的工作原理有一個比較好的了解,那將幫助你更好地接受光學測試技術并駕馭這種新技術所帶來的所有優(yōu)勢。
光纖傳感器相關文章:光纖傳感器原理
評論