集中供暖及中央空調(diào)系統(tǒng)用熱量計(jì)的研究
在集中供暖和中央空調(diào)使用收費(fèi)過(guò)程中,目前仍按建筑面積計(jì)算,該方式已不適應(yīng)市場(chǎng)化管理的要求,迫切需要對(duì)用戶消耗的熱(冷)量進(jìn)行相應(yīng)的計(jì)量,以維護(hù)用戶和供暖(冷)雙方的利益,但目前未見(jiàn)該類似儀表 的廣泛使用。這是由于熱量計(jì)量存有困難,使該類儀表和開(kāi)發(fā)受到限制。首先,因?yàn)闊崃繉儆谶^(guò)程量,在實(shí)驗(yàn)或工程測(cè)量中,傳統(tǒng)測(cè)量方法對(duì)過(guò)程量的計(jì)量本身存在較大的難度,而且存在測(cè)量誤差大,修正因素多等問(wèn)題。事實(shí)上,傳統(tǒng)測(cè)量方法無(wú)法滿足對(duì)熱量的精確計(jì)量,但隨著計(jì)算機(jī)以及信號(hào)處理技術(shù)在熱工參數(shù)測(cè)量中的廣泛應(yīng)用,熱工測(cè)量?jī)x表向智能化、微型化發(fā)展,充分利用微型計(jì)算機(jī)軟、硬件相結(jié)合的優(yōu)勢(shì)可實(shí)現(xiàn)熱量的精確計(jì)量。
在理論上,熱流率的測(cè)量在穩(wěn)定流動(dòng)中可以歸結(jié)為流體質(zhì)量流量與其溫差以及定壓比熱的乘積,即:在實(shí)驗(yàn)中對(duì)熱流率的測(cè)量主要采取直接法,并假設(shè)流體定壓比熱恒定不變,即簡(jiǎn)化為質(zhì)量流率與其溫差的測(cè)量,要對(duì)熱量進(jìn)行計(jì)量就必需連續(xù)對(duì)熱流率進(jìn)行測(cè)量并累加求和。該類計(jì)量?jī)x表的研究對(duì)供暖通風(fēng)、能源利用、實(shí)驗(yàn)研究等領(lǐng)域具有重要意義,但該類儀表的開(kāi)發(fā)研究比較困難,以集中供暖、中央空調(diào)系統(tǒng)用熱量計(jì)量?jī)x表為 例分析,存在如下問(wèn)題需要解決;
①供暖系統(tǒng)中,流體流動(dòng)速度較低,質(zhì)量流率較小,如何對(duì)供暖系統(tǒng)小流率流體的精確測(cè)量存在一 定難度。
② 進(jìn)、出口溫差的測(cè)量要保證一定精度,同時(shí)要保證溫差與質(zhì)量流率的測(cè)量同步并存儲(chǔ)有關(guān)數(shù)據(jù);而且系統(tǒng)的溫度(差)波動(dòng)較大,測(cè)點(diǎn)的確定、安裝等實(shí)際問(wèn)題較多,極難處理。
③ 即使能夠?qū)崿F(xiàn)對(duì)小流速換熱流體與溫差的同步測(cè)量,某一τ時(shí)刻的熱流率可以用理論公式: 利用傳統(tǒng)的測(cè)量方法完成上式的累計(jì)計(jì)量也是機(jī)極其困難的。
基于以上問(wèn)題,要實(shí)現(xiàn)對(duì)熱量的精確計(jì)量,只有充分發(fā)揮微型計(jì)算機(jī)的軟、硬件結(jié)合優(yōu)勢(shì),實(shí)現(xiàn)對(duì)小流量、小溫差的測(cè)量以及數(shù)據(jù)的存儲(chǔ)、計(jì)算、顯示等一系列功能。本文充分發(fā)揮單片微機(jī)系統(tǒng)具有易開(kāi)發(fā)、功能強(qiáng)、體積小、價(jià)格便宜等特點(diǎn),開(kāi)發(fā)了一套熱量計(jì)量?jī)x,實(shí)驗(yàn)證明 :該系統(tǒng)具有穩(wěn)定性好、精度高、功能強(qiáng)、自動(dòng)化程度高、易于維護(hù)保養(yǎng)等特點(diǎn)。
研究與開(kāi)發(fā)
在熱能工程及材料科學(xué)的研究和生產(chǎn)過(guò)程中對(duì)熱量的測(cè)量一般采用間接法,該類儀表大多僅是對(duì)熱流進(jìn)行測(cè)量,目前工業(yè)化的產(chǎn)品有輻射式熱流計(jì)、熱阻式熱流計(jì)等,該類儀表均需實(shí)驗(yàn)標(biāo)定儀表常數(shù),存在誤差大,測(cè)量滯后等缺點(diǎn),本文以熱量理論計(jì)算式的離散化方程式為基礎(chǔ),充分利用MCS51單片機(jī)系統(tǒng)具有易開(kāi)發(fā),軟硬件結(jié)合的優(yōu)勢(shì),實(shí)現(xiàn)了熱量的智能化計(jì)算,結(jié)合熱量測(cè)量的難點(diǎn),使該智能化儀表很好的實(shí)現(xiàn)了以下功能;
(1) 溫差的測(cè)量,該功能由兩級(jí)放大電路、A/D轉(zhuǎn)換電路、有關(guān)采集軟件完成。
(2) 小流量的測(cè)量,主要靠磁電感應(yīng)元件將流量信號(hào)轉(zhuǎn)化為標(biāo)準(zhǔn)頻率信號(hào),由MCS51單片機(jī)及有關(guān)采集軟件,實(shí)現(xiàn)頻率信號(hào)的累計(jì)計(jì)量。
(3) 熱量的累計(jì)計(jì)算以及數(shù)據(jù)的存儲(chǔ)功能,主要由軟件和相應(yīng)的寄存器來(lái)完成。
(4) 斷電保護(hù)功能,系統(tǒng)由于外部斷電,重要數(shù)據(jù)將被寫(xiě)入有關(guān)存儲(chǔ)器并保存,系統(tǒng)自備電源將開(kāi)始工作,并開(kāi)始記錄斷電開(kāi)始時(shí)間以及來(lái)電時(shí)間,來(lái)電后將自動(dòng)將斷電時(shí)間累加后存入外置RAM內(nèi)存儲(chǔ)。
(5) 顯示功能,無(wú)論用戶還是供暖公司均可通過(guò)儀表的顯示功能了解有關(guān)數(shù)據(jù)信息。
(6) 清零功能,供暖周期結(jié)束時(shí)供暖公司可以對(duì)儀表進(jìn)行清零,以便于管理。
為實(shí)現(xiàn)儀表的以上功能,系統(tǒng)硬件主要由以下模塊組成 :由單片機(jī)MCS51為主附加外部晶振電路以及復(fù)位電路組成的基本模塊、電源模塊、放大及A/D轉(zhuǎn)換模塊、外置RAM及電壓監(jiān)控模塊、外置時(shí)鐘及流量測(cè)量模塊、鍵盤(pán)及顯示模塊等,系統(tǒng)件組成見(jiàn)圖1,其中各模塊的組成以及主要實(shí)現(xiàn)的功能如下:
單片機(jī)MCS51為主組成的基本模塊是該系統(tǒng)的核心部分,主要完成系統(tǒng)采集到的數(shù)據(jù)進(jìn)行相關(guān)的處理,協(xié)調(diào)其他模塊的工作,使整個(gè)系統(tǒng)步調(diào)一致的工作,選用的芯片是8051型單片機(jī),具有5個(gè)內(nèi)部中斷,4K的ROM程序存儲(chǔ)器,使用極為方便,外部晶振選用12HZ ,復(fù)位電路主要是為熱量計(jì)運(yùn)行管理方便而設(shè)計(jì)的,與鍵盤(pán)的功能復(fù)位鍵相連。
系統(tǒng)電源模塊:主要完成向系統(tǒng)供5V標(biāo)準(zhǔn)直流工作電壓,包括系統(tǒng)中單片機(jī)、運(yùn)放、LCD顯示以及A/D轉(zhuǎn)換的工作電壓以及標(biāo)準(zhǔn)比較電壓等均由此電源提供,該電源的精密程度對(duì)整個(gè)系統(tǒng)的影響極大,主要由變壓器、整流電路、穩(wěn)壓管和比較電路組成 ,該電源輸出的電壓由6.5位的KEITHLEY2000多功能表測(cè)量得到其輸出范圍可穩(wěn)定在 :4.9999-5.0001V,其精度是極高的,作為基準(zhǔn)電壓對(duì)系統(tǒng)造成的誤差可以忽略不計(jì)。
放大以及A/D轉(zhuǎn)換模塊:主要功能是完成對(duì)熱電偶的信號(hào)進(jìn)行放大并經(jīng)A/D轉(zhuǎn)換送入相應(yīng)的寄存器,進(jìn)行相關(guān)的計(jì)算。該模塊的精度直接影響系統(tǒng)的測(cè)溫精度,是產(chǎn)生溫度測(cè)量誤差的主要來(lái)源,因此放大器件的選擇主要考慮其精密程度、抑制零漂能力、自校準(zhǔn)情況等性能,在系統(tǒng)中選用的芯片是TLC40502,該芯片在調(diào)試過(guò)程中放大5000倍時(shí)起零漂而造成的誤差不大于0.4℃。銅熱電偶在0 ~ 100℃范圍內(nèi)熱電勢(shì)36 μV/ ℃,可以出由于 零漂而造成的誤差不大于0.4℃。A/D轉(zhuǎn)換器選用TLC0831,該芯片工作溫度區(qū)間為0~70℃,屬于8位串行控制模數(shù)轉(zhuǎn)換器,易于和微處理器接口連接,該器件的分辨率及量化誤差是影響溫度測(cè)量精度的重要原因,以銅-康銅熱電偶以及測(cè)量放大倍數(shù)可知由于分辨率及量化誤差而引起的最大誤差不大于0.2℃,因此由于放大以及A/D轉(zhuǎn)換而引起的溫度測(cè)量誤差合計(jì)不大于0.6℃,相對(duì)于一般供暖系統(tǒng)的設(shè)計(jì)溫差20℃而言,由于上述原因而引起的最大誤差不大于3%,這一精度是比較高的。
評(píng)論