<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 抗干擾電路在測(cè)控裝備中的設(shè)計(jì)與實(shí)現(xiàn)

          抗干擾電路在測(cè)控裝備中的設(shè)計(jì)與實(shí)現(xiàn)

          作者: 時(shí)間:2012-06-27 來(lái)源:網(wǎng)絡(luò) 收藏
            1.引言

            眾所周知,接收機(jī)在無(wú)線電測(cè)控裝備中的位置介于天線和信號(hào)處理系統(tǒng)之間。其功能是從天線上所接收到的許多電磁信號(hào)中選出有用的目標(biāo)回波,經(jīng)過(guò)放大、轉(zhuǎn)換以后送給信號(hào)處理或終端顯示設(shè)備。由于我們所需要的只是有用信號(hào),其它不需要的電磁信號(hào)都稱為干擾。

            因此接收機(jī)的功能之一就是從包括干擾的信號(hào)中,選擇所需要的目標(biāo)信號(hào),并抑制干擾信號(hào)。在無(wú)線電測(cè)控裝備中,中頻接收機(jī)可采用多種抗干擾措施,以此提高了接收機(jī)的性能指標(biāo),以確保測(cè)控裝備信號(hào)處理和測(cè)量精度。

            2.干擾的分類及傳遞方式

            一般而言,無(wú)線電測(cè)控裝備中易受干擾的部分是中頻接收機(jī),除此之外還有模擬器、溫度控制、伺服控制、視頻處理、中心機(jī)和控制機(jī)以及顯控臺(tái)等電子設(shè)備。因而,中頻接收機(jī)工作的電磁環(huán)境十分復(fù)雜。這些設(shè)備在工作時(shí)都會(huì)產(chǎn)生不同形式的噪聲干擾,影響接收機(jī)的工作性能。

            2.1 干擾的分類

            根據(jù)無(wú)線電測(cè)控裝備中頻接收機(jī)的工作環(huán)境,干擾按照其產(chǎn)生和傳播途徑的不同,一般可以分為以下幾種:

           ?。?)電源干擾: 這種干擾的現(xiàn)象十分普遍。它是由不同的電子系統(tǒng)(或同一系統(tǒng)中的不同電路)共用同一個(gè)電源時(shí),由公共阻抗(即電源的內(nèi)阻)的耦合會(huì)形成自身噪聲的輸出或?qū)ν鈦?lái)干擾的接收,從而引起中頻接收信號(hào)的干擾;

           ?。?)感應(yīng)噪聲干擾: 這種干擾在每個(gè)電路板的設(shè)計(jì)中都存在,它是由于電路布線或元器件安裝位置不合理而形成的相互間的電場(chǎng)感應(yīng)、磁場(chǎng)感應(yīng)以及電磁感應(yīng)所產(chǎn)生的干擾;

           ?。?)反射噪聲干擾: 長(zhǎng)線傳輸中,由于傳輸阻抗不匹配會(huì)產(chǎn)生反射噪聲,而這種反射噪聲會(huì)對(duì)其他電路形成噪聲干擾。測(cè)控裝備機(jī)房各種傳輸線非常多,極易對(duì)接收機(jī)產(chǎn)生干擾;

           ?。?)自激振蕩所形成的干擾: 這種干擾在接收機(jī)中很常見。它是在具有放大功能的電路中由于不正當(dāng)?shù)恼答侎詈弦鸬淖约ふ袷幩a(chǎn)生的噪聲干擾。

           ?。?)失真噪聲干擾:信號(hào)在傳輸過(guò)程中,會(huì)由于電路工作異常而導(dǎo)致信號(hào)波形發(fā)生畸變。當(dāng)畸變波形的諧波分量較大時(shí),特別是和接收機(jī)60MHZ中頻信號(hào)頻率相同時(shí),會(huì)產(chǎn)生很大的干擾,影響接收機(jī)正常工作。

            2.2 干擾的傳遞方式

            噪聲源所產(chǎn)生的噪聲之所以能夠干擾正常工作的電子系統(tǒng),是因?yàn)榇嬖谥欢ǖ膫鞑ネ緩郊瘩詈贤ǖ?。圖1所示為典型的噪聲傳播途徑框圖。

          噪聲傳播途徑方框圖
          圖1 噪聲傳播途徑方框圖

            從大的方面來(lái)分,干擾的傳遞途徑有兩條:即通過(guò)空間輻射和通過(guò)導(dǎo)線傳導(dǎo)。

            2.2.1通過(guò)導(dǎo)線傳導(dǎo)干擾

            干擾通過(guò)導(dǎo)線傳輸主要通過(guò)公共阻抗耦合和接地環(huán)路耦合方式產(chǎn)生干擾。當(dāng)設(shè)備或元器件公用電源線和地線時(shí)(在印制板上是電源軌線和地線軌線),設(shè)備或元器件之間就會(huì)通過(guò)公共阻抗產(chǎn)生相互干擾。電源線和地線本身的電阻很低,但由于包含分布電感,所以高頻時(shí)其阻抗不可忽略。高頻干擾電流就會(huì)在公共阻抗上產(chǎn)生相當(dāng)可觀的干擾電壓。當(dāng)兩個(gè)設(shè)備相互間有信號(hào)連接,同時(shí)又各自在不同地點(diǎn)接地時(shí),如果兩個(gè)接地點(diǎn)之間存在電位差,就會(huì)產(chǎn)生地環(huán)干擾。

            2.2.2 通過(guò)空間傳播干擾

            干擾通過(guò)空間傳播時(shí),產(chǎn)生干擾的形式分為近場(chǎng)耦合和遠(yuǎn)場(chǎng)輻射兩種。如果敏感電路離干擾源的距離r《λ/2π(λ為干擾源最高頻率波長(zhǎng))則為近場(chǎng)耦合,干擾源通過(guò)電場(chǎng)和磁場(chǎng)對(duì)敏感電路產(chǎn)生干擾。

            設(shè)備內(nèi)部各部分電路之間的干擾常為近場(chǎng)耦合方式。若r》λ/2π時(shí)則為遠(yuǎn)場(chǎng)輻射干擾。一般設(shè)備或系統(tǒng)之間的干擾屬于遠(yuǎn)場(chǎng)輻射干擾。

            3.測(cè)控裝備抗干擾電路的技術(shù)實(shí)現(xiàn)

            3.1 中頻接收機(jī)的組成及功能

            以雷達(dá)測(cè)控裝備為例,中頻接收機(jī)主要包括中頻接收機(jī)組合和視頻接收機(jī)組合。其反射和應(yīng)答通道的組成和原理框圖分別如圖2、3所示。

          中頻接收機(jī)應(yīng)答通道組成原理框
          圖2 中頻接收機(jī)應(yīng)答通道組成原理框

          中頻接收機(jī)反射通道組成原理框
          圖3 中頻接收機(jī)反射通道組成原理框

            雷達(dá)中頻接收機(jī)是兩個(gè)獨(dú)立的三路單脈沖接收機(jī),六路中頻接收機(jī)中可采用兩個(gè)32dB數(shù)控衰減器來(lái)實(shí)現(xiàn)接收機(jī)間數(shù)控AGC功能,為了保證衰減器全部衰減時(shí)系統(tǒng)的噪聲系數(shù),在兩個(gè)衰減器之間增加了放大器。反射通道采用了三種SAW脈沖壓縮器件以處理各種波形的線形調(diào)頻信號(hào)。

            視頻接收組合是由I/Q正交鑒相器和視頻放大器組成。其中應(yīng)用數(shù)控衰減器實(shí)時(shí)調(diào)整各路本振信號(hào)的相位,以達(dá)到補(bǔ)償接收機(jī)系統(tǒng)相位一致性的目的。最后輸出反射和應(yīng)答的12路I/Q信號(hào)以及反射和應(yīng)答的檢波信號(hào)。

          linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)

          上一頁(yè) 1 2 下一頁(yè)

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();