二維DCT編碼的DSP實(shí)現(xiàn)與優(yōu)化
1 引言
現(xiàn)今的圖像編碼標(biāo)準(zhǔn),一般采用紋理編碼方式對(duì)圖像進(jìn)行壓縮。這種方式極大的利用了圖像數(shù)據(jù)的空間相關(guān)性,使圖像數(shù)據(jù)的壓縮能夠達(dá)到很高的比率。它主要是利用數(shù)學(xué)變換的方法,使用極少量的離散信號(hào)來(lái)表示大量的時(shí)域連續(xù)信號(hào)[1]。常用的數(shù)學(xué)變換有很多種,比如離散傅立葉變換DFT、沃爾什變換、哈爾變換、斜變換、離散余弦變換DCT、離散正弦變換DST 、K-L變換等。其中,K-L變換為理想狀態(tài)下的最佳變換方法,但是,由于K-L變換沒(méi)有快速的變換算法,而DCT、DFT和DST都具有與K-L變換近似的良好性質(zhì),尤其是當(dāng)一階馬爾可夫過(guò)程相鄰元素相關(guān)系數(shù)ρ逼近1時(shí),DCT的近似性能遠(yuǎn)遠(yuǎn)優(yōu)于其它兩者,并且DCT變換有具體的快速算法。因此,圖像壓縮標(biāo)準(zhǔn)中,使用DCT變換來(lái)實(shí)現(xiàn)紋理編碼。
由于DCT變換在各種編碼標(biāo)準(zhǔn)中要被反復(fù)調(diào)用,因此,其代碼執(zhí)行效率對(duì)實(shí)時(shí)視頻壓縮起著至關(guān)重要的作用。實(shí)際應(yīng)用中,如何實(shí)現(xiàn)DCT變換的編碼及如何用硬件電路實(shí)現(xiàn)這種編碼變換是使用者關(guān)心的問(wèn)題[。本文將利用DSP實(shí)現(xiàn)圖像的二維DCT變換并對(duì)其實(shí)行優(yōu)化。
2 DCT 變換
1974年Ahmed和Rao首先給出二維DCT 變換的數(shù)學(xué)表達(dá)式。該表達(dá)式適用于N點(diǎn)的DCT定義,但是,由于MPEG編碼一般是把視頻圖像幀或圖片分為場(chǎng)、片、宏塊的結(jié)構(gòu),一幀圖像一般包括1-2場(chǎng),每場(chǎng)包括若干片,每片包括若干宏塊,為了方便處理,把每個(gè)宏快分成8×8的子塊,即DCT處理的基本單元是8×8的子塊。因此,直接定義實(shí)用8點(diǎn)二維DCT變換:
其反變換為:
其中 ,i,j,u,v=0,1…7.
在(1)式中,把變換核分離可得兩次一維DCT變換:
因此,可以使用2次一維DCT變換來(lái)實(shí)現(xiàn)二維DCT變換。
在該定義被提出以后,很多優(yōu)秀的算法也被提了出來(lái)。如Chen,Lee的快速DCT算法等,Loeffler 在1989年提出的實(shí)用快速DCT算法共使用11次乘法和29次加法,該算法比起Chen的算法快而且不會(huì)發(fā)生Lee算法中的上溢問(wèn)題,并且該算法被證明已經(jīng)達(dá)到了算法極限,是最優(yōu)秀的算法[4]。該算法如圖1,它把整個(gè)DCT過(guò)程分成了四級(jí),第一級(jí)只有8次加法,第二級(jí)分為上下兩塊,上面是偶?jí)K,下面是奇塊,偶?jí)K有4次加法,奇塊有6次乘法和6次加法,第三級(jí)上面有5次加法3次乘法,下面有4次加法,第四級(jí)僅奇塊有2次乘法和2次加法。由圖1可見(jiàn),奇數(shù)部分的第四級(jí)與第二級(jí)的計(jì)算構(gòu)成了連續(xù)的乘法,這種運(yùn)算實(shí)現(xiàn)的時(shí)間將增加實(shí)際的計(jì)算時(shí)間。故Loeffler 提出了無(wú)乘法串行的并行計(jì)算方法,該方法使用了12次乘法和32次加法,這在具有并行的MAC處理器的運(yùn)算中,并不增加實(shí)際的計(jì)算時(shí)間[1]。本文即采用這種DCT算法實(shí)現(xiàn)圖像的壓縮與處理。
3 DSP及其視頻指令
我們使用ADI的ADSP-BF533EZLITE評(píng)估板作為實(shí)驗(yàn)平臺(tái),該評(píng)估板使用最大內(nèi)部時(shí)鐘600M的BF533處理器。處理器內(nèi)核包括二個(gè)40位的ALU,2個(gè)MAC,4個(gè)視頻ALU 及一個(gè)桶形移位寄存器。這種結(jié)構(gòu)使并行的視頻處理成為可能[5]。實(shí)驗(yàn)的軟件環(huán)境是VisualDSP4.5,該環(huán)境集成了高性能C/C++編譯器,并且具有比普通C/C++編譯器更高效的代碼優(yōu)化功能。
為了進(jìn)一步提高代碼效率,減少程序運(yùn)行時(shí)間和代碼空間,根據(jù)DSP硬件結(jié)構(gòu)及其指令的特點(diǎn),對(duì)代碼進(jìn)行匯編優(yōu)化。本文主要注重以下三方面的優(yōu)化。
(1)利用高度并行的算術(shù)運(yùn)算單元和功能強(qiáng)大的地址運(yùn)算單元的相結(jié)合的特點(diǎn),使用高密度指令代碼進(jìn)行代碼優(yōu)化。
Blackfin的高度并行結(jié)構(gòu)能在計(jì)算的同時(shí)進(jìn)行數(shù)據(jù)的存儲(chǔ),如R5=R1+R5,R4=R1-R5 ||R1=W[P0+0x4](X);該指令使用兩個(gè)加法器同時(shí)計(jì)算出兩個(gè)32位的值R1+R5和R1-R5并把該結(jié)果分別存入到R5和R4中,此時(shí)占用的是算術(shù)運(yùn)算單元的兩條內(nèi)部總線一個(gè)指令周期時(shí)間,由于外部總線空閑,可以把外部Cache中的數(shù)據(jù)送入到R1中。索引尋址和變址尋址相結(jié)合的模式使一個(gè)指令周期內(nèi)對(duì)不同塊的SDRAM訪問(wèn)成為了可能,比如上面的指令可以加一條R4=[I2++]仍能正確執(zhí)行,而且不增加指令執(zhí)行時(shí)間,地址運(yùn)算單元DAG還包括兩個(gè)用于嵌套零開(kāi)銷循環(huán)的循環(huán)計(jì)數(shù)器以及支持傳輸過(guò)程中飽和的限幅的硬件。這些特性使得Blackfin指令操作的效率很高。
(2)利用有利于DCT變換的操作數(shù)位尋址指令來(lái)優(yōu)化
Blackfin DSP指令集不僅支持一個(gè)周期最多3條指令的并發(fā)執(zhí)行,而且具有大量的像素操作和向量操作指令可以減少算法時(shí)間復(fù)雜度。位反轉(zhuǎn)指令對(duì)FFT、DCT、DFT等數(shù)學(xué)變換的操作數(shù)尋址提供了方便,在變換之前它把輸入數(shù)組數(shù)據(jù)通過(guò)位變換的方式變換到易于處理的排列方式,減少了操作數(shù)尋址的時(shí)間。
(3)利用IEEE 1180 舍入指令來(lái)支持DCT變換
Blackfin的加法指令支持預(yù)比例加減法,這種指令執(zhí)行的時(shí)間首先通過(guò)算術(shù)移位將兩個(gè)操作數(shù)變大或者變小后再相加減,這在DCT變換中為了保證運(yùn)算精度,一般會(huì)移位后相加減,這條指令大大加快了DCT變換的速度。
評(píng)論