<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 設(shè)計應(yīng)用 > 新型MOS變?nèi)莨艿纳漕l振蕩器設(shè)計

          新型MOS變?nèi)莨艿纳漕l振蕩器設(shè)計

          作者: 時間:2010-06-23 來源:網(wǎng)絡(luò) 收藏

          引言
          隨著移動通信技術(shù)的發(fā)展,射頻(RF)電路的研究引起了廣泛的重視。采用標準CMOS工藝實現(xiàn)壓控振蕩器(VCO),是實現(xiàn)RF CMOS集成收發(fā)機的關(guān)鍵。過去的VCO電路大多采用反向偏壓的變?nèi)荻O管作為壓控器件,然而在用實際工藝實現(xiàn)電路時,會發(fā)現(xiàn)變?nèi)荻O管的品質(zhì)因數(shù)通常都很小,這將影響到電路的性能。于是,人們便嘗試采用其它可以用CMOS工藝實現(xiàn)的器件來代替一般的變?nèi)荻O管,

          特性是非單調(diào)的,目前有兩種方法可以獲得單調(diào)的特性。
          一種方法是確保晶體管在VG變化范圍大的情況下不進入積累區(qū),這可通過將襯底與柵源結(jié)斷開而與電路中的最高直流電壓短接來完成(例如,電源電壓Vdd)。


          圖2是兩個相同尺寸MOS電容的Cmos-VSG特性曲線的相互對比。


          反型mos電容的調(diào)制特性曲線
          圖2反型MOS電容的調(diào)制特性曲線
          很明顯反型MOS電容的范圍要比普通MOS電容寬,前者只工作在強,中和弱反型區(qū),而從不進入積累區(qū)。
          更好的方法是應(yīng)用只工作在耗盡區(qū)和積累區(qū)的MOS器件,這樣會帶來更大的調(diào)諧范圍并且有更低的寄生電阻,即意味著更高的品質(zhì)因數(shù),原因是其耗盡區(qū)和積累區(qū)的電子是多子載流子,比空穴的遷移率高約三倍多。要得到一個積累型MOS電容,必須確保強反型區(qū),中反型區(qū)和弱反型區(qū)被禁止,這就需要抑制任何空穴注入 MOS的溝道。方法是將MOS器件中的漏源結(jié)的p摻雜去掉,同時在原來漏源結(jié)的位置做n摻雜的襯底接觸,如圖3所示。


          積累型mos電容剖面示意圖


          這樣就將n阱的寄生電阻減少到最校積累型MOS電容和普通MOS電容的調(diào)諧曲線如圖4所示。
          積累型mos電容的調(diào)制特性曲線
          圖4積累型MOS電容的調(diào)制特性曲線
          可以看到積累型MOS電容良好的單調(diào)性。值得注意的是在設(shè)計積累型MOS電容的過程中沒有引入任何附加工藝流程。
          設(shè)計與仿真結(jié)果
          vco的電路結(jié)構(gòu)圖

          圖5 VCO的電路結(jié)構(gòu)圖


          筆者所采用的VCO電路結(jié)構(gòu)如圖5所示。這是標準的對稱CMOS結(jié)構(gòu),兩個變?nèi)莨軐ΨQ連接,減小了兩端振蕩時電位變化對變?nèi)莨茈娙葜档挠绊?,提高了頻譜純度。為了保證匹配良好,電感要采用相同的雙電感對稱連接。此外,由于LC振蕩回路由兩個尺寸非常大的片內(nèi)集成電感和兩個同樣有較大尺寸的積累型MOS變?nèi)莨芙M成,較高的損耗使得品質(zhì)因數(shù)不高,這就需要較大的負跨導(dǎo)來維持振蕩持續(xù)進行;并且等效負跨導(dǎo)的絕對值必須比維持等幅振蕩時所需要的跨導(dǎo)值大才能保證起振,所以兩對耦合晶體管需要設(shè)置較大的寬長比,但大的寬長比同時帶來較大的寄生效應(yīng),造成噪聲和調(diào)諧范圍受到影響,最終在底端用兩個NMOS晶體管形成負電阻以補償VCO的損耗。根據(jù)小信號模型分析,忽略各種寄生及高階效應(yīng),可以估算得到等效負電阻RG的絕對值大小為(設(shè)兩個有源器件跨導(dǎo)分別為 gM1,gM2):20.jpg (2)頂端的PMOS晶體管提供偏置電流,這種結(jié)構(gòu)所需的電源電壓很低。
          整個設(shè)計基于TSMC的0.35μm鍺硅射頻工藝模型PDK,共有三層金屬。其中,電感為平面螺旋八邊形,由頂層金屬繞制而成。選取電感值為0.6nH, 那么在振蕩頻率選定的情況下可以確定總的電容大校構(gòu)成LC振蕩回路里的電容成份有電感的寄生電容(很小),NMOS晶體管的漏-襯底電容,柵-漏電容,柵-源電容和最重要的積累型MOS電容。在保證起振的情況下,為了獲得更大的調(diào)諧范圍,最后一項所占比例必須盡可能大。
          vco的調(diào)諧曲線


          圖6 VCO的調(diào)諧曲線


          最后采用的電源電壓為1.5V,功耗約為10mW。用Cadence平臺下的SpectreRF進行仿真,得到的調(diào)諧曲線如圖6所示。控制電壓在0~2V 變化時,振蕩頻率在3.59~4.77GHz間變化,中心頻率為4.18GHz,調(diào)諧范圍約為28%。中心頻率處的噪聲曲線如圖7所示,此時的控制電壓為0.75V,對應(yīng)偏移量600kHz的噪聲為-128dB/Hz。
          vco的相位噪聲曲線


          圖7 VCO的相位噪聲曲線


          當控制電壓由0.75V變到2V時,振蕩頻率變?yōu)?.77GHz,相位噪聲變?yōu)?-135dB/Hz,降低了7dB。這是由兩個方面的原因引起的,首先是由于LC振蕩回路總的電容減小,振蕩頻率增加,這就減小了要維持振蕩所需的負跨導(dǎo),但因為兩個NMOS晶體管提供的負跨導(dǎo)幾乎不變,所以就使得穩(wěn)定振蕩幅度增加,相位噪聲減校另外一方面是源于此過程中積累型MOS電容的溝道寄生電阻會隨著電壓升高而變小,從而降低了損耗,降低了相位噪聲。
          與采用反型MOS變?nèi)莨茉O(shè)計的VCO比較,由于電子具有較高的遷移率,使得積累型MOS電容的溝道寄生電阻比反型MOS電容要低,即意味著積累型MOS電容具有較高的品質(zhì)因數(shù),導(dǎo)致了VCO整體性能有所提高,特別是相位噪聲有所減少。比較結(jié)果如表1所示??紤]到工藝和功耗等因素,采用積累型MOS電容有更大的優(yōu)勢。

          表1兩種MOS電容VCO的性能比較


          兩種mos電容vco的性能比較

          結(jié)論
          基于0.35μm工藝,考慮低壓和低功耗,設(shè)計了一個工作頻率為4.2GHz的VCO,并在該電路中分別采用積累型MOS電容和反型MOS電容進行調(diào)諧。仿真結(jié)果表明,兩種VCO調(diào)諧范圍與中心頻率幾乎相同,在功耗約為10mW的情況下,積累型MOS調(diào)諧的VCO表現(xiàn)出更好的相位噪聲性能。



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();