低通濾波器實例
RC 電路實現(xiàn)的一個低通電子濾波器
一個固體屏障就是一個聲波的低通濾波器。當另外一個房間中播放音樂時,很容易聽到音樂的低音,但是高音部分大部分被過濾掉了。類似的情況是,一輛小汽車中非常大的音樂聲在另外一個車中的人聽來卻是低音節(jié)拍,因為這時封閉的汽車(和空氣間隔)起到了低通濾波器的作用,減弱了所有的高音。
電子低通濾波器用來驅(qū)動重低音喇叭(subwoofer)和其它類型的擴音器、并且阻塞它們不能有效傳播的高音節(jié)拍。
本文引用地址:http://www.ex-cimer.com/article/261269.htm
無線電發(fā)射機使用低通濾波器阻塞可能引起與其它通信發(fā)生干擾的諧波發(fā)射。
DSL分離器使用低通和高通濾波器分離共享使用雙絞線的DSL和POTS信號。
低通濾波器也在如Roland公司這樣的模擬合成器(synthesiser)合成的電子音樂聲音處理中發(fā)揮著重要的作用。參見subtractive synthesis.
理想與實際濾波器
一個理想的低通濾波器能夠完全剔除高于截止頻率的所有頻率信號并且低于截止頻率的信號可以不受影響地通過。實際上的轉(zhuǎn)換區(qū)域也不再存在。一個理想的低通濾波器可以用數(shù)學的方法(理論上)在頻域中用信號乘以矩形函數(shù)得到,作為具有同樣效果的方法,也可以在時域與sinc函數(shù)作卷積得到。
然而,這樣一個濾波器對于實際真正的信號來說是不可實現(xiàn)的,這是因為sinc函數(shù)是一個延伸到無窮遠處的函數(shù)(extends to infinity),所以這樣的濾波器為了執(zhí)行卷積就需要預(yù)測未來并且需要有過去所有的數(shù)據(jù)。對于預(yù)先錄制好的數(shù)字信號(在信號的后邊補零,并使得由此產(chǎn)生的濾波后的誤差小于量化誤差)或者無限循環(huán)周期信號來說這是可實現(xiàn)的。
實時應(yīng)用中的實際濾波器通過將信號延時一小段時間讓它們能夠“看到”未來的一小部分來近似地實現(xiàn)理想濾波器,這已為相移所證明。近似精度越高所需要的延時越長。
采樣定理(Nyquist-Shannon sampling theorem)描述了如何使用一個完善的低通濾波器和奈奎斯特-香農(nóng)插值公式從數(shù)字信號采樣重建連續(xù)信號。實際的數(shù)模轉(zhuǎn)換器都是使用近似濾波器。
電子低通濾波器
一階濾波器的頻率響應(yīng)
有許許多多不同頻率響應(yīng)的不同類型濾波器電路。濾波器的頻率響應(yīng)通常用波特圖表示。
例如,一階濾波器在頻率增加一倍(增加octave)時將信號強度減弱一半(大約-6dB)。一階濾波器幅度波特圖在截止頻率之下是一條水平線,在截止頻率之上則是一條斜線。在兩者邊界處還有一個knee curve在兩條直線區(qū)域之間平緩轉(zhuǎn)換。參見RC 電路。
二階濾波器對于削減高頻信號能起到更高的效果。這種類型的濾波器的波特圖類似于一階濾波器,只是它的滾降速率更快。例如,一個二階的巴特沃斯濾波器(它是一個沒有尖峰的臨界衰減RLC 電路)頻率增加一倍時就將信號強度衰減到最初的四分之一(每倍頻-12dB)。其它的二階濾波器最初的滾降速度可能依賴于它們的Q因數(shù),但是最后的速度都是每倍頻 -12dB。參見RCL 電路。
三階和更高階的濾波器也是類似??傊詈髇階濾波器的滾降速率是每倍頻6ndB。
對于任何的巴特沃斯濾波器,如果向右延長水平線并且向左上延伸斜線(函數(shù)的漸近線,它們將相交在“截止頻率”。一階濾波器在截止頻率的頻率響應(yīng)是水平線下-3dB。不同類型的濾波器——巴特沃斯濾波器、切比雪夫濾波器等——都有不同形狀的“knee curves”。許多二階濾波器設(shè)計成有“峰值”或者諧振以得到截止頻率處的頻率響應(yīng)處在水平線之上。參見電子濾波器中其它類型的濾波器。
'低'和'高'的含義——例如截止頻率——依賴于濾波器的特性。(術(shù)語“低通濾波器”僅僅是指濾波器響應(yīng)的形狀。一個高通濾波器能夠設(shè)計成比任何低通濾波器截止頻率更低的截止頻率。不同的頻率響應(yīng)是區(qū)分它們的依據(jù)。)電子濾波器能夠設(shè)計成任何所期望的頻率范圍——可以到微波頻率(超過 1000 MHz)乃至更高。
無源電子濾波器實現(xiàn)
顯示元件阻抗的低通濾波器
一個可以作為低通濾波器的簡單電路包括與一個負載串聯(lián)的電阻以及與負載并聯(lián)的一個電容。電容有電抗作用阻止低頻信號通過,低頻信號經(jīng)過負載。在較高頻率電抗作用減弱,電容起到短路作用。這個區(qū)分頻率(也稱為轉(zhuǎn)換頻率或者截止頻率(Hz))由所選擇的電阻和電容所確定。
或者(弧度每秒):
一個理解這個電路的方法是集中于電容充電的時刻。電容通過電阻充放電需要花費一定的時間:
在較低頻率,電容有充足的時間充電直至電壓等同于輸入電壓。
在較高頻率,電容在輸入電流方向切換之前只能充很少的電量。輸出上下波動的幅度只有輸入信號波動的一小部分。在兩倍的頻率,電容只有充一半電量的時間。
另外一個理解這個電路的方法是在特定頻率的電抗:
由于直流電不能通過電容器,直流電輸入必須從標為 Vout (類似于去掉電容)的路徑“流出”。
由于交流電可以很容易地流過電容器——幾乎同流過固態(tài)電線一樣容易——輸入的交流電從電容器“流出”,電容器將它短路到地(類似于使用一根導線替換電容器)。
需要注意的是電容器不是如上面所解釋的阻斷或接通那樣的一個“開/關(guān)”器件。電容器不斷變化地工作在兩個狀態(tài)之間。波特圖和頻率響應(yīng)可以顯示這個變化。
有源電子濾波器實現(xiàn)
有源低通濾波器
另外一種類型的電路是有源低通濾波器。
在這個例子中,截止頻率(Hz)定義為:
或者(弧度每秒):
通帶增益是-R2/R1 ,由于是一階濾波器,其阻帶滾降速率為每倍頻6dB。
許多情況下,一個簡單的增益或者抑制放大器(參見運算放大器)通過添加電容 C 轉(zhuǎn)換成低通濾波器。 這樣就減弱了高頻率下的頻率響應(yīng),并且避免了放大器內(nèi)部的震蕩。例如,一個音頻放大器可以制作成截止頻率為 100kHz 的低通濾波器以減弱可能會引起震蕩的頻率下的增益。由于人耳能夠聽到的音頻最大大約是20kHz,感興趣的頻率就完全落在通帶內(nèi),這樣放大器的表現(xiàn)就同所關(guān)心的音頻一模一樣
濾波器相關(guān)文章:濾波器原理
濾波器相關(guān)文章:濾波器原理
低通濾波器相關(guān)文章:低通濾波器原理
電源濾波器相關(guān)文章:電源濾波器原理
高通濾波器相關(guān)文章:高通濾波器原理 數(shù)字濾波器相關(guān)文章:數(shù)字濾波器原理 雙絞線傳輸器相關(guān)文章:雙絞線傳輸器原理
評論