四軸飛行器無刷直流電機驅(qū)動控制設(shè)計的實現(xiàn)
四軸飛行器是近來在專業(yè)與非專業(yè)領(lǐng)域都非常火爆的技術(shù)產(chǎn)品。下面這篇文章針對四軸飛行器無位置傳感器無刷直流電機的驅(qū)動控制,設(shè)計開發(fā)了三相六臂全橋驅(qū)動電路及控制程序。設(shè)計采用ATMEGA16單片機作為控制核心,利用反電勢過零點檢測輪流導通驅(qū)動電路的6個MOSFET實現(xiàn)換向;直流無刷電機控制程序完成MOSFET上電自檢、電機啟動軟件控制,PWM電機轉(zhuǎn)速控制以及電路保護功能。該設(shè)計電路結(jié)構(gòu)簡單,成本低、電機運行穩(wěn)定可靠,實現(xiàn)了電機連續(xù)運轉(zhuǎn)。
本文引用地址:http://www.ex-cimer.com/article/267828.htm近年來,四軸飛行器的研究和應用范圍逐步擴大,它采用四個無刷直流電機作為其動力來源。無刷直流電機為外轉(zhuǎn)子結(jié)構(gòu),直接驅(qū)動螺旋槳高速旋轉(zhuǎn)。
無刷主流電機的驅(qū)動控制方式主要分為有位置傳感器和無位置傳感器的控制方式兩種。由于在四軸飛行器中的要求無刷直流電機控制器要求體積小、重量輕、高效可靠,因而采用無位置傳感器的無刷直流電機。本文采用的是朗宇X2212 kv980無刷直流電機。
無刷直流電機驅(qū)動控制系統(tǒng)包括驅(qū)動電路和系統(tǒng)程序控制兩部分。采用功率管的開關(guān)特性構(gòu)成三相全橋驅(qū)動電路,之后使用DSP作為主控芯片,借助其強大的運算處理能力,實現(xiàn)電機的啟動與控制,但電路結(jié)構(gòu)復雜成本高,缺乏經(jīng)濟性。
直流無刷電機的換向采用反電勢過零檢測法,一旦檢測到第三相的反電勢過零點就為換向做準備。反電勢過零檢測采用虛擬中性點的方法,通過檢測電機各相的反電勢過零點來判斷轉(zhuǎn)子位置。而基于電機三相繞組端電壓變化規(guī)律的電機電流換向理論,可以大大提高系統(tǒng)控制精度。
本文無刷直流電機的驅(qū)動電路采用三相六臂全橋電路,控制電路的管理控制芯片采用ATmega 16單片機實現(xiàn),以充分發(fā)揮其高性能、資源豐富的特點,因而外圍電路結(jié)構(gòu)簡單。無刷直流電機采用軟件啟動和PWM速度控制的方式,實現(xiàn)電機的啟動和穩(wěn)定運行,大大提高四軸飛行器無刷直流電機的調(diào)速和控制性能。
1三相六臂全橋驅(qū)動電路
無刷直流電機驅(qū)動控制電路如圖1所示。該電路采用三相六臂全橋驅(qū)動方式,采用此方式可以減少電流波動和轉(zhuǎn)矩脈動,使得電機輸出較大的轉(zhuǎn)矩。在電機驅(qū)動部分使用6個功率場效應管控制輸出電壓,四軸飛行器中的直流無刷電機驅(qū)動電路電源電壓為12 V.驅(qū)動電路中,Q1~Q3采用IR公司的IRFR5305(P溝道),Q4~Q6為IRFR1205(N溝道)。該場效應管內(nèi)藏續(xù)流二極管,為場效應管關(guān)斷時提供電流通路,以避免管子的反向擊穿,其典型特性參數(shù)見表1.T1~T3采用PDTC143ET為場效應管提供驅(qū)動信號。
表1 MOSFET管參數(shù)
由圖1可知,A1~A3提供三相全橋上橋臂柵極驅(qū)動信號,并與ATMEGA16單片機的硬件PWM驅(qū)動信號相接,通過改變PWM信號的占空比來實現(xiàn)電機轉(zhuǎn)速控制;B1~B3提供下橋臂柵極驅(qū)動信號,由單片機的I/O口直接提供,具有導通與截止兩種狀態(tài)。
圖1無刷直流電機三相六臂全橋驅(qū)動電路
無刷直流電機驅(qū)動控制采用三相六狀態(tài)控制策略,功率管具有六種觸發(fā)狀態(tài),每次只有兩個管子導通,每60°電角度換向一次,若某一時刻AB相導通時,C相截至,無電流輸出。單片機根據(jù)檢測到的電機轉(zhuǎn)子位置,利用MOSFET的開關(guān)特性,實現(xiàn)電機的通電控制,例如,當Q1、Q5打開時,AB相導通,此時電流流向為電源正極→Q1→繞組A→繞組B→Q5→電源負極。類似的,當MOSFET打開順序分別為Q1Q5,Q1Q6,Q2Q6,Q2Q4,Q3Q4,Q3Q5時,只要在合適的時機進行準確換向,就可實現(xiàn)無刷直流電機的連續(xù)運轉(zhuǎn)。
比較器相關(guān)文章:比較器工作原理
霍爾傳感器相關(guān)文章:霍爾傳感器工作原理
霍爾傳感器相關(guān)文章:霍爾傳感器原理
評論