<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 設(shè)計(jì)應(yīng)用 > 射頻/微波PCB的信號注入"法門"

          射頻/微波PCB的信號注入"法門"

          作者: 時(shí)間:2015-06-18 來源:網(wǎng)絡(luò) 收藏

            將高頻能量從同軸連接器傳 遞到印刷電路板()的過程通常被稱為信號注入,它的特征難以描述。能量傳遞的效率會因電路結(jié)構(gòu)不同而差異懸殊。 材料及其厚度和工作頻率范圍等因素,以及連接器設(shè)計(jì)及其與電路材料的相互作用都會影響性能。通過對不同信號注入設(shè)置的了解,以及對一些微波信號注入方 法的優(yōu)化案例的回顧,性能可以得到提升。

          本文引用地址:http://www.ex-cimer.com/article/275944.htm

            實(shí)現(xiàn)有效的信號注入與設(shè)計(jì)相關(guān),一般寬帶優(yōu)化比窄帶更有挑戰(zhàn)性。通常高頻注入隨著頻率升高而更加困難,同時(shí)也可能隨電路材料的厚度增加,電路結(jié)構(gòu)的復(fù)雜性增加而有更多問題。

            信號注入設(shè)計(jì)與優(yōu)化

            從同軸電纜和連接器到微帶 的信號注入如圖1 所示。穿過同軸電纜和連接器的電磁(EM)場分布呈圓柱形,而PCB 內(nèi)的EM 場分布則是平面或矩形。從一種傳播介質(zhì)進(jìn)入另一種介質(zhì),場分布會改變以適應(yīng)新環(huán)境,從而產(chǎn)生異常。改變?nèi)Q于介質(zhì)類型;例如,信號注入是從同軸電纜和連接 器到微帶、接地共面波導(dǎo)(GCPW),還是帶線。同軸電纜連接器的類型也起著重要作用。

            

           

            圖1. 從同軸電纜和連接器到微帶的信號注入。

            優(yōu)化涉及幾個(gè)變量。了解同軸電纜/ 連接器內(nèi)EM 場分布很有用,但還必須將接地回路視為傳播介質(zhì)的一部分。它對實(shí)現(xiàn)從一種傳播介質(zhì)到另一種傳播介質(zhì)的平穩(wěn)阻抗轉(zhuǎn)變通常是有幫助的。了解阻抗不連續(xù)點(diǎn)處的容 抗和感抗讓我們能夠理解電路表現(xiàn)。如果能夠進(jìn)行三維(3D)EM 仿真,就可以觀察到電流密度分布。此外,最好將與輻射損耗有關(guān)的實(shí)際情況也考慮其中。

            雖然信號發(fā)射連接器和PCB 之間的接地回路可能看上去不成問題,從連接器到PCB的接地回路非常連續(xù),但并不總是如此。連接器的金屬和PCB 之間通常存在著很小的表面電阻。連接不同部件的焊店和這些部件的金屬的電導(dǎo)率也有很小的差異。在RF 和微波頻率較低時(shí),這些小差異的影響通常較小,但是頻率較高時(shí)對性能的影響很大。地回流路徑的實(shí)際長度會影響利用給定的連接器和PCB 組合能夠?qū)崿F(xiàn)的傳輸質(zhì)量。

            如圖2a 所示,在電磁波能量從連接器引腳傳遞到微帶PCB 的信號導(dǎo)線時(shí),回到連接器外殼的接地回路對于厚微帶傳輸線來說可能會太長。采用介電常數(shù)較高的PCB材料會增加接地回路的電長度,從而使問題惡化。通路延 長會引發(fā)具有頻率相關(guān)性的問題,進(jìn)而產(chǎn)生局部的相速和電容差異。二者都與變換區(qū)內(nèi)的阻抗相關(guān),并且會對其產(chǎn)生影響,從而產(chǎn)生回波損耗差異。理想情況下,接 地回路的長度應(yīng)最小化,使得信號注入?yún)^(qū)不存在阻抗異常。請注意,圖2a 所示之連接器的接地點(diǎn)只存在于電路底部,而這是最糟糕的情況。很多RF 連接器的接地引腳與信號在同一層。這種情況下,PCB 上也會設(shè)計(jì)接地焊盤在那里。

            圖2b 展示了接地共面波導(dǎo)轉(zhuǎn)微帶信號注入電路,在這里,電路的主體是微帶,但信號注入?yún)^(qū)是接地共面波導(dǎo)(GCPW)。共面發(fā)射微帶很有用,因?yàn)樗軌驅(qū)⒔拥鼗芈?最小化,并且還具有其它有用特性。如果使用信號導(dǎo)線兩邊均有接地引腳的連接器,那么接地引腳間距對性能有重大影響。已經(jīng)證明該距離影響頻率響應(yīng)。

            

           

            圖2. 厚微帶傳輸線電路和較長的到連接器的地回流路徑(a)接地共面波導(dǎo)轉(zhuǎn)微帶的信號注入電路(b)。

            在利用基于羅杰斯公司10mil 厚RO4350B 層壓板的共面波導(dǎo)轉(zhuǎn)微帶微帶進(jìn)行實(shí)驗(yàn)時(shí),使用了共面波導(dǎo)口接地間距不同,但其他部分類似的連接器(見圖3)。連接器A 的接地間隔約為0.030",而連接器B 的接地間隔為0.064"。這兩種情況下,連接器發(fā)射到同一電路上。

            

           

            圖3. 利用具有不同接地間隔的類似端口的同軸連接器測試共面波導(dǎo)轉(zhuǎn)微帶電路。

            x 軸表示頻率,每格5 GHz。微波頻率較低(< 5 GHz)時(shí),性能相當(dāng),但頻率高于15 GHz 時(shí),接地間隔較大的電路性能變差。連接器類似,雖然這2 種型號的引腳直徑稍有不同,連接器B 的引腳直徑較大并且設(shè)計(jì)用于較厚的PCB 材料。這也可能會導(dǎo)致性能差異。


          上一頁 1 2 3 下一頁

          關(guān)鍵詞: 射頻 PCB

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();