將ADC介接到高效能運(yùn)算放大器
前言:一般而言,用來(lái)驅(qū)動(dòng)現(xiàn)今高分辨率類比/數(shù)碼轉(zhuǎn)換器的電源都是擁有數(shù)百歐姆或以上的AC或DC負(fù)載。因此,一個(gè)具備有高輸入阻抗(數(shù)百萬(wàn)歐姆)和低輸出阻抗的運(yùn)算放大器便成為ADC驅(qū)動(dòng)器輸入的最佳選擇。ADC驅(qū)動(dòng)器可作為緩沖器和低通濾波器之應(yīng)用,以減低系統(tǒng)的整體雜訊。
本文引用地址:http://www.ex-cimer.com/article/82022.htm隨著訊號(hào)在電路板的布線和冗長(zhǎng)電纜上傳送,系統(tǒng)雜訊會(huì)積聚在訊號(hào)里,而一個(gè)差動(dòng)ADC會(huì)拒絕任何看來(lái)像共模電壓的訊號(hào)雜訊。相比起單端的訊號(hào),采用差動(dòng)訊號(hào)有好幾個(gè)優(yōu)點(diǎn)。首先,差動(dòng)訊號(hào)可將ADC的動(dòng)態(tài)范圍增大一倍。其次,它可提供更佳的諧波失真效能。現(xiàn)今有幾個(gè)方法可從一個(gè)雙重運(yùn)算放大器配置產(chǎn)生出差動(dòng)訊號(hào)。其中一種方法是采用單端/差動(dòng)轉(zhuǎn)換技術(shù),而另一種則需動(dòng)用差動(dòng)輸入源。為了利用完全的ADC的動(dòng)態(tài)范圍,ADC的輸入必須被驅(qū)動(dòng)至滿刻度的輸入電壓。
本文將會(huì)討論三種不同的ADC驅(qū)動(dòng)器架構(gòu):?jiǎn)蔚絾?、單端到差?dòng)和差動(dòng)到差動(dòng)。主要目的是希望能扼要地提供一切用ADC介接高效能運(yùn)算放大器的資料。
訊號(hào)路徑的必要組件
以下會(huì)把訊號(hào)路徑中的類比前端設(shè)計(jì)之幾個(gè)組成部份一起討論。典型訊號(hào)路徑的類比前端包括有一個(gè)用來(lái)驅(qū)動(dòng)ADC的運(yùn)算放大器、一個(gè)RC濾波器、ADC和微控制器或數(shù)碼訊號(hào)處理器(DSP)。
圖1:典型訊號(hào)路徑的類比前端方塊圖
現(xiàn)實(shí)世界中的輸入源會(huì)帶有不理想的阻抗,因此需依賴一個(gè)很低輸出阻抗的緩沖放大器來(lái)驅(qū)動(dòng)ADC的輸入。然而,外置的RL-CL濾波器會(huì)作用為一個(gè)抗疊頻濾波器,以幫助減低ADC驅(qū)動(dòng)器的雜訊頻寬,以及緩沖由ADC取樣和保持電路所引致的充電瞬時(shí)。為了盡量減低輸入電壓的跌降,外置的并列電容(CL)必須比ADC的內(nèi)置輸入電容大10倍,而同時(shí)外置的串行電容(RL)亦必須夠大以固定發(fā)生在運(yùn)算放大器輸出的相位延遲,從而維持電路的穩(wěn)定性。對(duì)于大部份的應(yīng)用而言,在運(yùn)算放大器輸出和ADC輸入之間用一個(gè)串行隔離電阻來(lái)連接,都可以帶來(lái)益處,因?yàn)檫@個(gè)串行電阻可有助限制運(yùn)算放大器的輸出電流,而為這個(gè)串行電阻選定數(shù)值是一項(xiàng)非常重要的工作。
一個(gè)比較高的電阻值將會(huì)增加運(yùn)算放大器的負(fù)載阻抗,從而改善運(yùn)算放大器的整體諧波失真(THD)效能??墒?,ADC通常都較喜歡以一個(gè)低阻抗的源來(lái)驅(qū)動(dòng)。因此,必須為這個(gè)串行電阻找出最佳的數(shù)值,才能一同為運(yùn)算放大器和ADC帶來(lái)最佳的THD、SNR和SFDR效能。當(dāng)把ADC連接到一個(gè)運(yùn)算放大器時(shí),最重要是了解將會(huì)影響到效能的規(guī)格?,F(xiàn)今的ADC規(guī)格,例如是THD、SNR、設(shè)置時(shí)間和SFDR等,它們均對(duì)濾波、測(cè)量、視頻和重現(xiàn)應(yīng)用很關(guān)鍵。高效能運(yùn)算放大器的設(shè)置時(shí)間、THD和雜訊效能必須比被驅(qū)動(dòng)的ADC的效能更好,以確保系統(tǒng)的精確度以及將錯(cuò)誤減至最低或甚至消除。
在本文中, LMH6611或LMH6618單一運(yùn)算放大器會(huì)被用來(lái)驅(qū)動(dòng)單通道的ADC121S101 類比/數(shù)碼轉(zhuǎn)換器,而另一方面,LMH6612或LMH6619雙重運(yùn)算放大器會(huì)被用來(lái)驅(qū)動(dòng)差動(dòng)輸入的ADC121S625或ADC121S705類比/數(shù)碼轉(zhuǎn)換器。這些放大器的應(yīng)用范圍相當(dāng)廣泛,特別適用于要求高速、低供電電流、低雜訊,以及需要驅(qū)動(dòng)復(fù)雜ADC和視頻負(fù)載的應(yīng)用。
運(yùn)算放大器和ADC的重要規(guī)格
在現(xiàn)實(shí)中,有些系統(tǒng)應(yīng)用會(huì)要求低THD、低SFDR和寬闊動(dòng)態(tài)范圍(SNR),而另一些則可能要求高SNR,并且可能會(huì)犧牲THD和SFDR的效能來(lái)?yè)Q取更佳的雜訊效能。
對(duì)于運(yùn)算放大器和ADC而言,雜訊都是一項(xiàng)很重要的規(guī)格。這里有三個(gè)主要影響ADC整體效能的雜訊來(lái)源:量化雜訊--是由ADC本身所產(chǎn)生的雜訊(尤其在較高的頻率下),以及由應(yīng)用電路所產(chǎn)生的雜訊。輸入源的阻抗可影響運(yùn)算放大器的雜訊效能。理論上,ADC的訊號(hào)與雜訊的比例(SNR)可用下列算式計(jì)算出來(lái):
算式中的N是ADC的分辨率。例如根據(jù)這條算式,一個(gè)12位的ADC便擁有74dB的SNR??墒?,實(shí)際的SNR數(shù)值會(huì)大約是72dB。為獲得更佳的SNR,ADC驅(qū)動(dòng)器雜訊應(yīng)該愈小愈好。LMH6611/LMH6612/LMH6618/LMH6619的低電壓雜訊僅為10 nV/ 。
運(yùn)算放大器和ADC的整體設(shè)置時(shí)間必須在1 LSB之內(nèi),而LMH6618/LMH6619和LMH6611/LMH6612的0.01%設(shè)置時(shí)間分別為120ns和100ns。
此外,ADC驅(qū)動(dòng)器的THD必須低于ADC。LMH6618/LMH6619在2VPP輸出和100 KHz輸入頻率時(shí)的SFDR為100dBc,而LMH6611/LMH6612在2VPP輸出和1 MHz 輸入頻率時(shí)的SFDR則為90dBc。
訊號(hào)/雜訊比和失真(SINAD)是一個(gè)參數(shù),它結(jié)合了SNR和THD這兩個(gè)規(guī)格。SINAD是指輸出訊號(hào)的RMS值與所有其它低于時(shí)鐘頻率一半的光譜成份之RMS值之比例,這包括諧波但不包括DC,以及可憑下列算式從SNR和THR中計(jì)算出來(lái):
由于SINAD是將輸入頻率與所有不良頻率成份作比較,所以它其實(shí)是ADC動(dòng)態(tài)效能的一個(gè)整體性測(cè)量。以下的部份將會(huì)詳細(xì)討論三種不同的ADC驅(qū)動(dòng)器架構(gòu)。
1. 單到單ADC驅(qū)動(dòng)器
這個(gè)架構(gòu)有一個(gè)單端式輸入源接駁到運(yùn)算放大器的輸入,然后此運(yùn)算放大器的單端式輸出會(huì)再接駁到ADC的單端式輸入。僅僅10 nV/ 的低雜訊和130 MHz的寬闊頻寬促使LMH6618成為驅(qū)動(dòng)12位ADC121S101 500KSPS至1MSPS 類比/數(shù)碼轉(zhuǎn)換器的首選,這個(gè)ADC擁有一個(gè)具備內(nèi)置取樣和保持電路的逐次逼近架構(gòu)(successive approximation architecture)。圖2所示為一個(gè)驅(qū)動(dòng)ADC121S101的LMH6618之原理圖,所用的是具備有增益-1(反相)的二階多重反饋配置。圖中的反相配置比起非反相的為佳,原因是反相配置可提供更多的線性輸出回應(yīng)。表1列出LMH6611或LMH6618與ADC121S101組合后的效能資料。圖3表示出在f = 200 KHz時(shí)的LMH6611和ADC121S101組合之FET繪圖。ADC驅(qū)動(dòng)器的500 KHz截止頻率可從下列算式計(jì)算出來(lái):
運(yùn)算放大器的增益由下列算式設(shè)定:
圖2:?jiǎn)蔚絾蜛DC驅(qū)動(dòng)器
圖3:?jiǎn)蔚絾蜛DC驅(qū)動(dòng)器的FET繪圖
表1:LMH6611/LMH6618與ADC121S101組合后的效能
2. 單端到差動(dòng)ADC驅(qū)動(dòng)器
圖4中的單端到差動(dòng)ADC驅(qū)動(dòng)器采用了LMH6612雙重運(yùn)算放大器來(lái)緩沖一個(gè)單端源,以便驅(qū)動(dòng)一個(gè)具備有差動(dòng)輸入的ADC。其中一個(gè)運(yùn)算放大器會(huì)被配置成一個(gè)單位增益緩沖器,并負(fù)責(zé)驅(qū)動(dòng)運(yùn)算放大器U2的反相(IN-)輸入和ADC121S625的非反相(IN+)輸入。U2把輸入訊號(hào)倒向并驅(qū)動(dòng)ADC121S625的反相輸入。U2的增益配置為+2,因此可在無(wú)需犧牲THD效能下減低雜訊。至于2.5V的共模電壓會(huì)同時(shí)設(shè)立在兩個(gè)運(yùn)算放大器U1和U2的非反相輸入。
當(dāng)0至VREF的單端輸入訊號(hào)被AC耦合到運(yùn)算放大器的非反相終端時(shí),以及當(dāng)每一個(gè)運(yùn)算放大器的非反相終端在中標(biāo)量2.5V下被偏壓時(shí),這種配置便可產(chǎn)生±2.5Vpp的差動(dòng)輸出訊號(hào)。此外,兩個(gè)輸出RC抗疊頻濾波器會(huì)同時(shí)使用在U1和U2的輸出與ADC121S625的輸入之間,以減輕來(lái)自輸入源的不良高頻雜訊之影響。每一個(gè)RC濾波器均具備有約22 MHz.的截止頻率。圖5表示出在f = 20 KHz時(shí)LMH6612和ADC121S625組合的FET繪圖。
圖4:?jiǎn)味说讲顒?dòng)ADC驅(qū)動(dòng)器
圖5:?jiǎn)味说讲顒?dòng)ADC驅(qū)動(dòng)器的FET繪圖
表2:LMH6612/LMH6619與ADC121S625兩個(gè)組合的效能資料
3. 差動(dòng)到差動(dòng)ADC驅(qū)動(dòng)器
LMH6619雙重運(yùn)算放大器可以被配置成一個(gè)差動(dòng)到差動(dòng)的ADC驅(qū)動(dòng)器,以便用來(lái)將一個(gè)差動(dòng)源緩沖到一個(gè)差動(dòng)輸入ADC,正如圖6所示。該差動(dòng)到差動(dòng)ADC驅(qū)動(dòng)器可用兩個(gè)單到單ADC驅(qū)動(dòng)器組成。這些驅(qū)動(dòng)器的每一個(gè)輸出會(huì)接駁到差動(dòng)ADC的個(gè)別輸入。在這里每一個(gè)單到單ADC驅(qū)動(dòng)器都采用相同的組件,并且配置成增益-1(反相)。
圖6:差動(dòng)到差動(dòng)ADC驅(qū)動(dòng)器
下表分別總結(jié)出LMH6612和LMH6619與ADC121S625和ADC121S705這四個(gè)組合的效能。表中同時(shí)包括有LMH6612和LMH6619分別在2個(gè)不同的頻率下連接到兩個(gè)ADC的資料。為了用盡ADC的整個(gè)動(dòng)態(tài)范圍,25VPP的最高輸入會(huì)施加到ADC的輸入。圖7表示出在f = 20 KHz時(shí)LMH6612和ADC121S625組合的FET繪圖。
表3:LMH6612和LMH6619分別連接到ADC121S625和ADC121S70后的效能
圖7:差動(dòng)到差動(dòng) ADC驅(qū)動(dòng)器的FET繪圖
接地和電路板布局考慮
將輸入源接地連接到電源接地是非常重要的。對(duì)于上述每一個(gè)的ADC驅(qū)動(dòng)器配置,當(dāng)建立電阻器網(wǎng)絡(luò)以確保差動(dòng)輸出擁有相同增益時(shí),必須同時(shí)考慮訊號(hào)源的阻抗。例如,一個(gè)音頻精確訊號(hào)產(chǎn)生器擁有22Ω的源阻抗,而電路板則有一個(gè)50Ω的終端,因此設(shè)計(jì)人員必須調(diào)節(jié)增益和輸入,以便能在運(yùn)算放大器的輸出處獲取所需的訊號(hào)。
為了獲得最佳的高頻效能,以下是一些電路板布局的建議:
將ADC和放大器放置得愈接近愈好
將供電旁路電容器盡量放近裝置(距離少于1英寸)
采用表面黏著而非穿孔式組件,以及采用接地和電源層
盡量減少布線的長(zhǎng)度
為冗長(zhǎng)布線采用終端式傳輸線
圖8:差動(dòng)到差動(dòng)ADC驅(qū)動(dòng)器的電路板布局
LMH6612/LMH6619只消耗僅6.5mA/2.5Ma的電流,相比起市面上大部份的全差動(dòng)放大器少了超過(guò)20mA。采用LMH6611/LMH6612/LMH6618/LMH6619的主要優(yōu)點(diǎn)是低功率和低成本。當(dāng)中,LMH6611和LMH6612最適合使用在那些在奈奎斯特(Nyquist)頻率20 KHz至2 MHz下運(yùn)行的應(yīng)用,而LMH6618和LMH6619則最適合使用在那些在奈奎斯特頻率20 KHz至500 MHz下運(yùn)行的應(yīng)用。
總括而言,本文涵蓋了所有重要的考慮因素,包括外置RL-CL網(wǎng)絡(luò)的選擇以及運(yùn)算放大器的關(guān)鍵參數(shù):象是THD、設(shè)置時(shí)間和雜訊,這些都是在把高效能運(yùn)算放大器連接到ADC時(shí)所必須考慮的參數(shù)。此外,本文還詳細(xì)討論了三種不同的ADC驅(qū)動(dòng)器配置,并且在實(shí)驗(yàn)室進(jìn)行了嚴(yán)謹(jǐn)?shù)臏y(cè)試。最后,本文亦論及接地和電路板布局時(shí)需要注意的地方,從而改善系統(tǒng)的效能。
評(píng)論