<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          首頁  資訊  商機   下載  拆解   高校  招聘   雜志  會展  EETV  百科   問答  電路圖  工程師手冊   Datasheet  100例   活動中心  E周刊閱讀   樣片申請
          EEPW首頁 >> 主題列表 >> 功率因數(shù)校正(pfc)

          功率因數(shù)校正(pfc) 文章 進入功率因數(shù)校正(pfc)技術社區(qū)

          GaN 如何在基于圖騰柱 PFC 的電源設計中實現(xiàn)高效率

          • 幾乎所有現(xiàn)代工業(yè)系統(tǒng)都會用到 AC/DC 電源,它從交流電網(wǎng)中獲取電能,并將其轉化為調節(jié)良好的直流電壓傳輸?shù)诫姎庠O備。隨著全球范圍內功耗的增加,AC/DC 電源轉換過程中的相關能源損耗成為電源設計人員整體能源成本計算的重要一環(huán),對于電信和服務器等“耗電大戶”領域的設計人員來說更是如此。氮化鎵 (GaN) 可提高能效,減少 AC/DC 電源損耗,進而有助于降低終端應用的擁有成本。例如,借助基于 GaN 的圖騰柱功率因數(shù)校正 (PFC),即使效率增益僅為 0.8%,也能在 10 年間幫助一個 100MW 數(shù)據(jù)
          • 關鍵字: ti  GaN  圖騰柱  PFC  電源  

          干貨 | 如何更好的理解PFC(功率因數(shù)校正)

          • 01?什么是功率因數(shù)補償?功率因數(shù)補償:在上世紀五十年代,已經針對具有感性負載的交流用電器具的電壓和電流不同相(圖1)從而引起的供電效率低下提出了改進方法(由于感性負載的電流滯后所加電壓,由于電壓和電流的相位不同使供電線路的負擔加重導致供電線路效率下降,這就要求在感性用電器具上并聯(lián)一個電容器用以調整其該用電器具的電壓、電流相位特性,例如:當時要求所使用的40W日光燈必須并聯(lián)一個4.75μF的電容器)。用電容器并連在感性負載,利用其電容上電流超前電壓的特性用以補償電感上電流滯后電壓的特性來使總的特
          • 關鍵字: PFC  功率因數(shù)校正  

          GaN如何在基于圖騰柱PFC的電源設計中實現(xiàn)高效率

          • 幾乎所有現(xiàn)代工業(yè)系統(tǒng)都會用到 AC/DC 電源,它從交流電網(wǎng)中獲取電能,并將其轉化為調節(jié)良好的直流電壓傳輸?shù)诫姎庠O備。隨著全球范圍內功耗的增加,AC/DC 電源轉換過程中的相關能源損耗成為電源設計人員整體能源成本計算的重要一環(huán),對于電信和服務器等“耗電大戶”領域的設計人員來說更是如此。氮化鎵 (GaN) 可提高能效,減少 AC/DC 電源損耗,進而有助于降低終端應用的擁有成本。例如,借助基于 GaN 的圖騰柱功率因數(shù)校正 (PFC),即使效率增益僅為 0.8%,也能在 10 年間幫助一個 100MW 數(shù)據(jù)
          • 關鍵字: TI  GaN  PFC  

          電源設計更快更好,高效能圖騰柱PFC應用須知

          • 現(xiàn)今電源供應器市場為因應全球減碳活動,已經將效能目標設定為更高效率、減少損失、節(jié)省能源、降低成本、提高系統(tǒng)容量為主。安森美(onsemi)提出最新高效能Totem Pole(圖騰柱) 結合全橋整流器之PFC IC NCP1680/1681設計方案,相較傳統(tǒng)PFC之轉換效率可以提升3%~4%,符合未來電源供應器之節(jié)省能源,降低成本,提高系統(tǒng)容量之訴求。加上NCP1680/1681快速的負載暫態(tài)補償響應,以及高規(guī)格安規(guī)等級各式保護功能,特別是具有PFC-OK訊號供應后級電源時序控制,NCP1680/1681應
          • 關鍵字: 大大通  PFC  

          三相PFC轉換器如何大幅提高車載充電器的充電功率?

          • 隨著汽車市場電氣化時代的到來,對電池充電器的需求越來越大。通過簡單的公式可以知道,功率越大,充電時間就越短。本文考慮的是三相電源,其所能提供的功率最高為單相電源的3 倍。這里提及的三相 PFC 板是基于碳化硅 MOSFET 的車載充電器系統(tǒng)第一級的示例,它會提高系統(tǒng)效率并減少 BOM 內容。開發(fā) PFC 板的主要目的是方便訪問不同設備,從而為測試階段和測量提供便利;外形尺寸優(yōu)化從來不是 EVB 的目標。  一 輸出電壓在這里,三相 PFC 提供的輸出電壓被固定為 700 V(精度5%)。得益于
          • 關鍵字: 安森美  PFC  車載充電器  

          基于ST L4985A 的低 THD 350W CCM PFC 前置穩(wěn)壓器方案

          • 介紹本應用筆記介紹了基于新型 L4985 連續(xù)導通模式的演示板 EVL4985-350W (CCM) 功率因數(shù)控制器 (PFC),并介紹了其臺架評估的主要結果。該板實現(xiàn)了350W,寬范圍輸入 PFC 預調節(jié)器,適用于從 150 W 到數(shù) kW 的所有 SMPS,必須符合 IEC61000-3-2 和JEITA-MITI 標準。由于 L4985 上嵌入了專利控制,該設計的主要特點是輸入電流失真極低(THD)在所有工作條件下,并且外部元件數(shù)量非常有限,如高壓啟動電路和X-cap 放電電路嵌入在 L4985 中
          • 關鍵字: ST  Power  PFC  CCM  l4985a  

          PFC電路:死區(qū)時間理想值的考量

          • 由于該電路是進行同步整流工作的電路,所以我們通過仿真來探討高邊(HS)和低邊(LS)SiC MOSFET SCT2450KE的死區(qū)時間理想值,即不直通的最短時間。死區(qū)時間可以通過仿真工具的PWM控制器參數(shù)TD1(HS)和TD2(LS)來分別設置。關鍵要點?橋式電路中的死區(qū)時間設置與損耗和安全性有關,因此需要充分確認。?死區(qū)時間的理想值是不直通的最短時間。?由于開關器件的開關速度會受溫度和批次變化等因素影響而發(fā)生波動,因此在設計過程中,除了最短時間外,還應留有余量。在本文中,我們將探討如何估算橋式電路中理想
          • 關鍵字: 羅姆  PFC  

          使用NCP1623A設計緊湊高效的PFC級的IC控制電路設計

          • 之前我們介紹過快速設計由 NCP1623 驅動的 CrM/DCM PFC 級的關鍵步驟中的定義關鍵規(guī)格與功率級設計。本文將詳細說明IC控制電路設計中的細節(jié):FB引腳電路、VCTRL 引腳電路、CS/ZCD 引腳電路、CSZCD電阻器設計等內容。步驟 3:IC 控制電路設計如圖 1 所示,反饋配置包括:●  一個電阻分壓器,用于降低體電壓,以向 FB 引腳提供反饋信號。出于安全考慮,分壓器的上層電阻通常由兩個或三個電阻構成。否則,RFB1 的任何意外短接都會將輸出高電壓施加到控制器上并將
          • 關鍵字: 安森美  NCP1623A  PFC  

          使用NCP1623A設計緊湊高效的PFC級的關鍵步驟

          • 本文介紹了快速設計由 NCP1623 驅動的 CrM/DCM PFC 級的關鍵步驟中的定義關鍵規(guī)格與功率級設計,并以實際的 100W 通用電源應用為例進行說明,IC控制電路設計將在后續(xù)的推文中分享?!?nbsp; 最大輸出功率:100 W●  Rms 線路電壓范圍:90 V - 264 V●  調節(jié)輸出電壓:●  低壓為 250 V(115V 電源)●  高壓為 390 V(230V 電源)NCP1623 具有多個選項,本文側重于NCP1623A,它與其他版本的主要
          • 關鍵字: 安森美  NCP1623A  PFC  

          PFC電路:柵極電阻的更改

          • 在實際的電路設計工作中,降噪是的一項重大課題,通常,可以通過提高開關器件的柵極電阻來抑制噪聲,但其代價是效率降低(損耗增加),因此很好地權衡柵極電阻值的設置是非常重要的。在本文中,我們來探討當將開關器件的損耗抑制在規(guī)定值以下時,最大柵極電阻RG的情況。另外,由于噪聲需要實際裝機評估,所以在這里省略噪聲相關的探討。關鍵要點?增加開關元件的柵極電阻會抑制噪聲,但與之存在權衡關系的效率會降低,因此很好地權衡柵極電阻值的設置是非常重要的。?將開關器件的損耗抑制在規(guī)定值以下時,其最大柵極電阻RG可以通過仿真來確認。
          • 關鍵字: ROHM  PFC  

          隔離電流檢測放大器在PFC升壓系統(tǒng)中的應用

          • PFC( Power Factor Correction)被稱為“功率因數(shù)校正”,被定義為有效功率和總耗電量(視在功率)的比值。當使用于大中功率開關電源時,提高功率因數(shù)可以降低電網(wǎng)傳輸中的損耗從而提高電能的輸送效率。因此提高功率因數(shù)有著重要的意義。本文將為大家介紹川土微電子CA-IS120X/130X系列產品在PFC中的應用,并針對實際應用提出使用方法和控制建議。01 功率因數(shù)的定義功率因數(shù)定義為交流電路有功功率P(W)對視在功率S(V*A)的比值。當交流電壓和電流相位不同時,則功率因數(shù)小于1。用戶電器設
          • 關鍵字: 川土微電子  放大器  PFC  

          安森美半導體推出新一代Multi-Mode (DCM & CCM) PFC IC–NCP1618應用于 500W 之防疫醫(yī)療儀器電源方案

          • 一場世紀病毒帶給人類天翻地覆的影響,全球對于救命的醫(yī)療儀器需求殷切,世平集團推出新一代PFC IC – NCP1618應用于 500W  之防疫醫(yī)療儀器電源,是采用安森美(ON Semi) 半導體新一代高效能NCP1618 Multi-Mode (DCM & CCM)  Power Factor Controller (多模操作之功率因數(shù)控制IC) . 此一IC 內建高壓啟動(HV Start-up)電路,智能轉換連續(xù)電流模式(CCM)、臨界電流模式(CrM) 及非連續(xù)電流模式
          • 關鍵字: 安森美  NCP1618  醫(yī)療  電源  PFC  DCM  CCM  

          利用PFC電路減少諧波失真

          • 日常生活中,大家會發(fā)現(xiàn)工業(yè)用電電費會高于居民用電電費。從技術角度來解答是因為工業(yè)用電傳輸成本高,由于工業(yè)應用中的用電設備多為大功率電感或容性負載,其功率因數(shù)相對居民用電設備的功率因數(shù)較低,從而導致無功功率較高,損耗大,因此供電成本相對較高。而居民用電普遍為中小功率設備,耗電小,功率因數(shù)高,無功功率損耗少。本文將介紹功率因數(shù)(PF)和總諧波失真 (THD) 的概念,并回顧如何利用功率因數(shù)校正 (PFC) 電路和 PFC 控制器來實現(xiàn)高功率因數(shù)并減少諧波失真。交流電的功率因數(shù)功率因素PF (λ) 是指有功功率
          • 關鍵字: MPS  PFC  

          安森美半導體多元操作模式(CrM.DCM.CCM) PFC IC NCP1655應用于500W with STB電競桌機電源

          • 電腦發(fā)展至今已擴展至眾多領域,電競電腦及服務器運用因其高速、大容量和多重連線的特點,預期將為電競電腦及服務器帶來更多爆炸性的成長。相對電競及服務器電源需求也有等比例的需求成長。 因應電競電腦及服務器的應用普及,安森美提出高效能PFC多元操作模式IC NCP1655的設計方案,且NCP1655輸入電壓由90V至265VAC,無論在輕載/半載/全載情境下,皆能提高轉換效率。加上快速的負載暫態(tài)補償響應,以及高規(guī)格安規(guī)等級各式保護功能,特別是具有PFC-OK訊號供應后級電源時序控制,NCP1655應用達到高效率,
          • 關鍵字: Onsemi  CrM  DCM  CCM  PFC  NCP1655  電競  電源  

          安森美半導體推出新一代Totem Pole 功率因數(shù)調整控制IC NCP1680 應用于300W超高效網(wǎng)通電源

          • 行動通訊電腦發(fā)展至今已近40年,第五代行動通訊技術(簡稱5G)是最新一代行動通訊技術,5G的效能目標是高資料速率、減少延遲、節(jié)省能源、降低成本、提高系統(tǒng)容量和大規(guī)模裝置連接。為因應5G基地臺應用普及節(jié)省電源需求,安森美半導體提出最新高效能Totem Pole(圖騰柱) 結合全橋整流器之PFC IC NCP1680設計方案,相較傳統(tǒng)PFC之轉換效率可以提升3%~4%,符合5G通訊訴求之節(jié)省能源,降低成本,提高系統(tǒng)容量之訴求,加上NCP1680快速的負載暫態(tài)補償響應,以及高規(guī)格安規(guī)等級各式保護功能,特別是具有
          • 關鍵字: onsemi  NCP1680  Totem Pole PFC  圖騰柱  
          共366條 2/25 « 1 2 3 4 5 6 7 8 9 10 » ›|
          關于我們 - 廣告服務 - 企業(yè)會員服務 - 網(wǎng)站地圖 - 聯(lián)系我們 - 征稿 - 友情鏈接 - 手機EEPW
          Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
          《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
          備案 京ICP備12027778號-2 北京市公安局備案:1101082052    京公網(wǎng)安備11010802012473
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();