<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          首頁  資訊  商機   下載  拆解   高校  招聘   雜志  會展  EETV  百科   問答  電路圖  工程師手冊   Datasheet  100例   活動中心  E周刊閱讀   樣片申請
          EEPW首頁 >> 主題列表 >> ltspice

          在LTspice中創(chuàng)建并行負載移位寄存器

          • 我們探索了用于混合信號電路仿真的數(shù)字移位寄存器的設計和功能。與所有SPICE衍生物一樣,LTspice主要用于模擬仿真。然而,通過整合其數(shù)字元件目錄中的邏輯功能,我們還可以使用它來驗證混合信號電路。我們在前兩篇文章中研究了LTspice數(shù)字組件的結構和仿真行為。在本文中,我們將使用它們來構建一個并行負載移位寄存器。寄存器是數(shù)字和混合信號IC的關鍵子電路。在寄存器中,多個單比特存儲單元(通常是觸發(fā)器)連接在一起形成多位存儲設備。例如,我們需要以下內容來創(chuàng)建一個單字節(jié)寄存器:八雙人字拖。允許我們同時從所有八個
          • 關鍵字: LTspice,模擬仿真  

          修改LTspice中數(shù)字組件的操作

          • 定制LTspice邏輯門和觸發(fā)器的設備參數(shù)可以幫助您更準確地模擬這些組件。本文將介紹規(guī)范制定過程,并提供一些有用的提示。本系列的第一篇文章討論了LTspice邏輯門組件的底層電氣結構,特別關注了未使用與邏輯低輸入的棘手問題。在本文中,我們將看到調整這些組件的某些設備參數(shù)如何使我們能夠定制它們的電氣行為。我們的重點將放在以下關鍵參數(shù)上:邏輯電壓。過渡時期。輸出阻抗。圖1顯示了一個基本的雙輸入AND電路的低到高輸出轉換,其中所有這些參數(shù)都處于默認狀態(tài)。LTspice中具有默認器件參數(shù)的雙輸入AND門的低到高輸
          • 關鍵字: LTspice,數(shù)字組件,邏輯電壓,過渡時期,輸出阻抗  

          LTspice中邏輯門的使用介紹

          • 本文解釋了如何成功地將邏輯門集成到LTspice模擬中。SPICE模擬器主要用于模擬電路。盡管如此,在許多情況下,例如設計混合信號電路,數(shù)字組件可以增強SPICE模擬。因此,LTspice組件庫有一個名為Digital的目錄。如圖1所示,它包含幾個數(shù)字組件。LTspice組件庫中的數(shù)字組件目錄。 圖1。LTspice數(shù)字元件目錄。然而,當你開始使用這些組件時,你可能會發(fā)現(xiàn)它們并不像看起來那么用戶友好。本文將參考相關的LTspice文檔,探討將數(shù)字組件整合到LTspice原理圖中的一些不太明顯的方
          • 關鍵字: SPICE  LTspice,模擬電路  邏輯門  

          用先進的SPICE模型模擬MOSFET電流-電壓特性

          • 在本文中,我們使用90nm CMOS的SPICE模型來繪制NMOS晶體管的關鍵電學關系。在前一篇文章中,我解釋了如何獲得集成電路MOSFET的高級SPICE模型,并將其納入LTspice仿真中。然后,我們使用這個模型來研究NMOS晶體管的閾值電壓。在本文中,我們將使用相同的模型來生成直觀地傳達晶體管電氣行為的圖。繪制漏極電流與漏極電壓我們將從生成漏極電流(ID)與漏極-源極電壓(VDS)的基本圖開始。為此,我們將柵極電壓設置為遠高于閾值電壓的固定值,然后執(zhí)行直流掃描模擬,其中VDD的值逐漸增加。圖1顯示了
          • 關鍵字: LTspice  MOSFET  NMOS  

          用LTspice和負電壓發(fā)生器探索負電壓

          • 在本文中,我們將使用SPICE仿真來探索負電壓的理論和行為。在之前的一篇文章中,我提供了負電壓的主要理論解釋。我想繼續(xù)這個話題,展示負電壓的作用,并結合解釋,這將有助于加強我們對負電壓的理解。要做到這一點,我們將在這里使用LTspice進行“動手”工作,但如果您可以使用測試設備和一些常見的電子元件,您可以很容易地將第一個模擬重新創(chuàng)建為用示波器測量的物理電路。電容器:負電壓發(fā)生器首先,讓我們從我能想到的最簡單的負電壓產生電路之一開始,它由脈沖電壓源、電容器和電阻器組成。該電路如下圖1所示。具有脈沖電壓源、電
          • 關鍵字: LTspice,負電壓發(fā)生器,負電壓  

          LTspice中負電壓電荷泵的分析——電源和負載電阻

          • 了解如何使用LTspice模擬來提供對開關電容器電壓反相電源性能的重要見解。之前,我寫了一篇文章,解釋了負電壓的基本原理,我在LTspice實驗室繼續(xù)了這一主題,該實驗室使用模擬來闡明負電壓是電路中產生的。作為LTspice實驗室的一部分,我還將介紹一種電路拓撲結構,它可以產生穩(wěn)定的負電壓,并能夠為其他組件提供電流。在這一系列新文章中,我想更詳細地了解一下這種負電壓電路的功能,目的是增強我們對如何優(yōu)化現(xiàn)實生活中的開關電容器電源和電源的理解。綜述:電容器和開關的負電壓在深入研究之前,讓我們看看圖1,它顯示了
          • 關鍵字: LTspice,負電壓電荷泵,電源,負載電阻  

          CMOS逆變器短路功耗的仿真

          • 在邏輯電平轉換期間,電流短暫地流過兩個晶體管。本文探討了由此產生的功耗,并為測量電流和功率提供了一些有用的LTspice技巧。在本系列的第一篇文章中,我們研究了CMOS反相器的動態(tài)和靜態(tài)功耗。在隨后的文章中,我們使用LTspice模擬來進一步了解電容充電和放電引起的功耗。作為討論的一部分,我們創(chuàng)建了如圖1所示的LTspice反相器電路。增加了負載電阻和電容的CMOS反相器的LTspice示意圖。 圖1。具有負載電阻和電容的CMOS反相器的LTspice示意圖。我們將在本文中繼續(xù)使用上述原理圖,研
          • 關鍵字: CMOS逆變器,短路功耗,仿真,LTspice  

          CMOS反相器開關功耗的仿真

          • 當CMOS反相器切換邏輯狀態(tài)時,由于其充電和放電電流而消耗功率。了解如何在LTspice中模擬這些電流。本系列的第一篇文章解釋了CMOS反相器中兩大類功耗:動態(tài),當反相器從一種邏輯狀態(tài)變?yōu)榱硪环N時發(fā)生。靜態(tài),由穩(wěn)態(tài)運行期間流動的泄漏電流引起。我們不再進一步討論靜態(tài)功耗。相反,本文和下一篇文章將介紹SPICE仿真,以幫助您更徹底地了解逆變器的不同類型的動態(tài)功耗。本文關注的是開關功率——當輸出電壓變化時,由于電容充電和放電而消耗的功率。LTspice逆變器的實現(xiàn)圖1顯示了我們將要使用的基本LTspice逆變器
          • 關鍵字: CMOS,反相器,功耗  仿真,LTspice  

          LTspice中電流模式控制降壓變換器的分析

          • 在本文中,我們使用電壓波形來探索CMC降壓轉換器中關鍵子電路的電氣行為。在前兩篇文章中,我們探討了圖1所示的電流模式控制(CMC)降壓轉換器的設計原理和基本操作。在本文中,我們將使用模擬來對電路的電氣行為進行相當精細的分析。峰值CMC降壓轉換器的LTspice示意圖。 圖1。在LTspice中實現(xiàn)的CMC降壓轉換器。啟動行為我的LTspice實現(xiàn)與我基于它的電路之間有兩個主要區(qū)別:我們在上一篇文章的最后討論了缺乏坡度補償?shù)膯栴}。我加入了額外的電路,可以幫助啟動調節(jié)器,我們現(xiàn)在將討論。如果您檢查圖
          • 關鍵字: LTspice,降壓變換器,CMC  

          雙極性結型晶體管的開關損耗

          • 在SPICE仿真的幫助下,我們研究了當BJT用作開關時發(fā)生的兩種類型的功耗。雙極性結型晶體管(BJT)既可以用作小信號放大器,也可以用作開關。盡管現(xiàn)在你在電路板上看不到很多分立的BJT放大器——使用運算放大器要方便有效得多——但作為開關連接的BJT仍然很常見。BJT開關通常用于阻斷或向有刷直流電機、燈或螺線管等負載輸送電流。它們有時也出現(xiàn)在更高頻率的開關應用中,如開關模式調節(jié)器或D類放大器。圖1顯示了BJT開關的兩種常見應用:高強度LED照明(左)和繼電器控制(右)。兩個開關都由微控制器上的通用輸入/輸出
          • 關鍵字: LTspice  雙極性結型晶體管  開關損耗  

          電流模式控制降壓變換器在LTspice中的實現(xiàn)

          • 在本文中,我們使用LTspice來討論電流模式控制(CMC)降壓調節(jié)器中電壓誤差放大器和PWM發(fā)生器的操作。在前一篇文章中,我介紹了一種LTspice降壓轉換器,它使用電流模式控制(CMC)從10V輸入產生5V調節(jié)輸出。我已經復制了圖1中的示意圖。CMC降壓轉換器的LTspice示意圖。 圖1。峰值CMC降壓轉換器的LTspice示意圖。該架構由四個子系統(tǒng)組成:功率級、電流感測電路、誤差放大器和PWM發(fā)生器。我們在第一篇文章中介紹了功率級和電流感測電路;在本文中,我們將重點介紹誤差放大器和PWM
          • 關鍵字: LTspice,CMC,PWM,降壓變換器  

          LTspice中電流模式控制降壓變換器的設計

          • 在本文中,我們將通過檢查LTspice中的示例電路布局來了解開關穩(wěn)壓器的電流模式控制(CMC)。我之前的文章提供了電流模式控制(CMC)作為一種在DC-DC轉換器中實現(xiàn)高性能電壓調節(jié)的技術的理論概述。現(xiàn)在,我們將使用LTspice來更深入地了解這些電路的實際工作方式。我創(chuàng)建了一個CMC降壓轉換器的LTspice示意圖(圖1),以幫助我們檢查CMC的設計原理和操作。該電路是一個閉環(huán)系統(tǒng),使用電壓和電流反饋來鎖定輸出電壓。峰值CMC降壓轉換器的LTspice示意圖。 圖1。峰值CMC降壓轉換器的LT
          • 關鍵字: LTspice,CMC,降壓變換器  

          運算放大器的回轉率和上升時間的解答

          • 為了避免運算放大器輸出信號的失真和緩慢轉換,了解轉換速率很重要。在這篇文章中,我們考察了它的原因和影響。我們經常從一個理想化的模型開始運算放大器的設計。盡管這有助于分析,但也意味著我們的模型缺乏關于運算放大器性能限制的各種潛在重要細節(jié)。我們之前在一個由兩部分組成的系列文章中介紹了其中一個限制,即信號擺動。在這篇文章中,我們將討論一個不同的非理想性:轉換速率,它被定義為運算放大器的輸出電路可以產生的最大電壓變化率。如圖1所示,如果理論輸出波形的斜率超過轉換速率,實際輸出波形將偏離輸入波形的形狀。運算放大器的
          • 關鍵字: 運算放大器,LTspice,回轉速率,上升時間  

          DC-DC變換器的脈沖頻率調制模擬

          • 本文以脈沖頻率調制降壓變換器為例,介紹了將PFM納入開關調節(jié)器設計和仿真中的技術。我前面的文章解釋了脈沖頻率調制的特性和目的。在本文中,我將把LTspice引入討論中。我們將檢查一些用于處理PFM的有用示意圖,然后運行模擬并分析結果。 PFM降壓轉換器如果你已經閱讀了我的模擬降壓轉換器的指南,圖1可能看起來很熟悉——我們在文章中檢查的PWM降壓轉換器具有與下面的電路相同的一般結構。 PFM降壓轉換器的LTspice示意圖。?圖1。在LTspice中實現(xiàn)的PFM降壓轉換器。但是,因為我們使用的是PFM,所以
          • 關鍵字: DC-DC,PFM  LTspice  PWM,脈沖頻率調制  

          LTspice開關調節(jié)器的閉環(huán)控制

          • 了解如何在LTspice中模擬具有電壓控制PWM波形的開關電壓調節(jié)器。我最近的文章使用LTspice電路模擬來探索不同開關穩(wěn)壓器拓撲的功能和性能。這些文章集中在功率級上,功率級包含將輸入電壓轉換為更高或更低輸出電壓的基本組件。然而,只有當功率級與控制電路相結合時,它才能成為真正的調節(jié)器。該控制電路通過監(jiān)測VOUT并調整控制開關的信號的占空比或頻率來幫助維持指定的輸出電壓。輸出電壓被反饋到調節(jié)器中,并用于調節(jié)影響輸出幅度的信號。當我提到閉環(huán)控制時,這就是我的意思。在本文中,我將解釋如何在LTspice中模擬
          • 關鍵字: LTspice  開關調節(jié)器  閉環(huán)控制  PWM  
          共32條 1/3 1 2 3 »

          ltspice介紹

          您好,目前還沒有人創(chuàng)建詞條ltspice!
          歡迎您創(chuàng)建該詞條,闡述對ltspice的理解,并與今后在此搜索ltspice的朋友們分享。    創(chuàng)建詞條

          熱門主題

          樹莓派    linux   
          關于我們 - 廣告服務 - 企業(yè)會員服務 - 網站地圖 - 聯(lián)系我們 - 征稿 - 友情鏈接 - 手機EEPW
          Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
          《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
          備案 京ICP備12027778號-2 北京市公安局備案:1101082052    京公網安備11010802012473
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();