- 本設計使用目標檢測識別進行分類垃圾以代替傳統的人工分類。本設計旨在用前沿的YOLOv3模型去實現準確的垃圾識別。設計中的模型利用Anaconda搭建環境變量,并在Pycharm軟件上運行模型。YOLOv3模型實驗所需的數據集來自華為云人工智能大賽提供的垃圾分類數據集,共有44種垃圾類別,圖片數為1.9萬張。經測試發現YOLOv3模型能夠快速而又準確地識別出44種垃圾,隨后通過藍牙發出信號給STM32單片機部分,單片機通過控制舵機旋轉后完成全自動化垃圾分類。
- 關鍵字:
智能分類垃圾桶 環境保護 STM32單片機 深度學習 TensorFlow YOLOv3 202202
yolov3介紹
您好,目前還沒有人創建詞條yolov3!
歡迎您創建該詞條,闡述對yolov3的理解,并與今后在此搜索yolov3的朋友們分享。
創建詞條
關于我們 -
廣告服務 -
企業會員服務 -
網站地圖 -
聯系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網安備11010802012473