電源應用中的 MOSFET 大多是表面貼裝器件 (SMD),包括 SO8FL、u8FL 和 LFPAK 等封裝。通常選擇這些 SMD 的原因是它們具有良好的功率能力,同時尺寸較小,從而有助于實現更緊湊的解決方案。盡管這些器件具有良好的功率能力,但有時散熱效果并不理想。由于器件的引線框架(包括裸露漏極焊盤)直接焊接到覆銅區(qū),這導致熱量主要通過PCB進行傳播。而器件的其余部分均封閉在塑封料中,僅能通過空氣對流來散熱。因此,熱傳遞效率在很大程度上取決于電路板的特性:覆銅的面積大小、層數、厚度和布局。無論電路板是
關鍵字:
安森美 MOSFET
銀河微電12月20日在互動平臺表示,功率MOSFET器件已實現Clip Bond技術的量產;IPM模塊已完成一款封裝的量產,未來將根據市場情況逐步系列化;DFN0603無框架封裝已完成工藝驗證,性能指標符合開發(fā)目標要求;CSP0603封裝已完成技術開發(fā),未來芯片線改擴建時將進行成果轉化。
關鍵字:
銀河微電 MOSFET
_____“?動態(tài)特性是功率器件的重要特性,在器件研發(fā)、系統應用和學術研究等各個環(huán)節(jié)都扮演著非常重要的角色。故對功率器件動態(tài)參數進行測試是相關工作的必備一環(huán),主要采用雙脈沖測試進行。”按照被測器件的封裝類型,功率器件動態(tài)參數測試系統分為針對分立器件和功率模塊兩大類。長期以來,針對功率模塊的測試系統占據絕大部分市場份額,針對分立器件的測試系統需求較少,選擇也很局限。隨著我國功率器件國產化進程加快,功率器件廠商和系統應用企業(yè)也越來越重視功率器件動態(tài)參數測試,特別是針對分立器件的測試系統提出了越來越多
關鍵字:
MOSFET
高頻高效是開關電源及電力電子系統發(fā)展的趨勢,高頻工作導致功率元件開關損耗增加,因此要使用軟開關技術,保證在高頻工作狀態(tài)下,減小功率元件開關損耗,提高系統效率。高頻高效是開關電源及電力電子系統發(fā)展的趨勢,高頻工作導致功率元件開關損耗增加,因此要使用軟開關技術,保證在高頻工作狀態(tài)下,減小功率元件開關損耗,提高系統效率。功率MOSFET開關損耗有2個產生因素:1)開關過程中,穿越線性區(qū)(放大區(qū))時,電流和電壓產生交疊,形成開關損耗。其中,米勒電容導致的米勒平臺時間,在開關損耗中占主導作用。圖1 功率MOSFET
關鍵字:
MOSFET ZVS
碳化硅(SiC)金屬氧化物半導體場效應晶體管(MOSFET)作為寬禁帶半導體單極型功率 器件,具有頻率高、耐壓高、效率高等優(yōu)勢,在高壓應用領域需求廣泛,具有巨大的研究價值?;仡櫫烁邏?SiC MOSFET 器件的發(fā)展歷程和前沿技術進展,總結了進一步提高器件品質因數的元胞優(yōu)化結構,介紹了針對高壓器件的幾種終端結構及其發(fā)展現狀,對高壓 SiC MOSFET 器件存在的瓶頸和挑戰(zhàn)進行了討論。1 引言電力電子變換已經逐步進入高壓、特高壓領域,高壓功率器件是制約變換器體積、功耗和效率的決定性因素。特高壓交直流輸電、
關鍵字:
SiC MOSFET
東芝電子元件及存儲裝置株式會社(“東芝”)近日宣布推出采用新型L-TOGL?(大型晶體管輪廓鷗翼式引腳)封裝的車載40V N溝道功率MOSFET---“XPQR3004PB”和“XPQ1R004PB”。這兩款MOSFET具有高額定漏極電流和低導通電阻。產品于今日開始出貨。近年來,隨著社會對電動汽車需求的增長,產業(yè)對能滿足車載設備更大功耗的元器件的需求也在增加。這兩款新品采用了東芝的新型L-TOGL?封裝,支持大電流、低導通電阻和高散熱。上述產品未采用內部接線柱[1]結構,通過引入一個銅夾片將源極連接件和外
關鍵字:
東芝 MOSFET
功率半導體器件,也稱為電力電子器件,主要用于電力設備的電能變換和控制電路方面大功率的電子器件。逆變(直流轉換成交流)、整流(交流轉換成直流)、斬波(直流升降壓)、變頻(交流之間轉換)是基本的電能轉換方式。MOSFET 和 IGBT 是主流的功率分立器件。一 新能源汽車是功率器件增量需求主要來源01 下游應用領域廣泛,新能源汽車為主作為電能轉化和電路控制的核心器件,功率器件下游應用十分廣泛,包括新能源(風電、光伏、儲能和電動汽車)、消費電子、智能電網、軌道交通等,根據每個細分領域性能要求
關鍵字:
功率器件 IGBT MOSFET 國產替代
羅姆今年發(fā)布了他們的第4代(Gen4)金氧半場效晶體管(MOSFET)產品。新系列包括額定電壓為750 V(從650 V提升至750 V)和1200 V的金氧半場效晶體管,以及多個可用的TO247封裝元件,其汽車級合格認證達56A/24m?。這一陣容表明羅姆將繼續(xù)瞄準他們之前取得成功的車載充電器市場。在產品發(fā)布聲明中,羅姆聲稱其第4代產品“通過進一步改進原有的雙溝槽結構,在不影響短路耐受時間的情況下,使單位面積導通電阻比傳統產品降低40%?!彼麄冞€表示,“此外,顯著降低寄生電容使得開關損耗比我們的上一代碳
關鍵字:
羅姆 ROHM MOSFET
美國 賓夕法尼亞 MALVERN、中國 上海 — 2023年1月30日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代號:VSH)宣布,推出兩款新型30 V對稱雙通道n溝道功率MOSFET---SiZF5300DT和SiZF5302DT,將高邊和低邊TrenchFET? Gen V MOSFET組合在3.3 mm x 3.3 mm PowerPAIR? 3x3FS單體封裝中。Vishay Siliconix SiZF5300DT和SiZF5302DT適用于計算和通信應
關鍵字:
Vishay 對稱雙通道 MOSFET
全球半導體解決方案供應商瑞薩電子(TSE:6723)近日宣布,推出一款全新柵極驅動IC——RAJ2930004AGM,用于驅動電動汽車(EV)逆變器的IGBT(絕緣柵雙極型晶體管)和SiC(碳化硅)MOSFET等高壓功率器件。柵極驅動IC作為電動汽車逆變器的重要組成部分,在逆變器控制MCU,及向逆變器供電的IGBT和SiC MOSFET間提供接口。它們在低壓域接收來自MCU的控制信號,并將這些信號傳遞至高壓域,快速開啟和關閉功率器件。為適應電動車輛電池的更高電壓,RAJ2930004AGM內置3.75kV
關鍵字:
瑞薩 柵極驅動IC EV逆變器 IGBT SiC MOSFET
SiC MOSFET 作為第三代寬禁帶半導體具有擊穿電場高、熱導率高、電子飽和速率高、抗輻射能力強等優(yōu)勢,在各種各樣的電源應用范圍在迅速地擴大。其中一個主要原因是與以前的功率半導體相比,SiC MOSFET 使得高速開關動作成為可能。但是,由于開關的時候電壓和電流的急劇變化,器件的封裝電感和周邊電路的布線電感影響變得無法忽視,導致漏極源極之間會有很大的電壓尖峰。這個尖峰不可以超過使用的MOSFET 的最大規(guī)格,那就必須抑制尖峰。MOS_DS電壓尖峰產生的原因在半橋電路中,針對MOS漏極和源極產生的尖峰抑制
關鍵字:
Arrow 碳化硅 MOSFET
PC、消費性市況在2022年第四季需求持續(xù)疲弱,且今年第一季客戶端仍舊處于保守態(tài)度,使得MOSFET庫存去化速度將比原先預期更加緩慢,供應鏈預期,最差情況可能要延續(xù)到今年第三季才可能逐步結束庫存去化階段。法人預期,尼克松(3317)、杰力(5299)、大中(6435)及富鼎(8261)等MOSFET廠營運可能將維持平淡到今年中。PC、消費性市況在歷經2022年下半年的景氣寒冬,且直到2022年底前都未能有效去化,使得MOSFET市場庫存去化速度緩慢。供應鏈指出,先前晶圓代工產能吃緊,客戶端重復下單情況在2
關鍵字:
庫存 MOSFET
眾所周知,“挖坑”是英飛凌的祖?zhèn)魇炙?。在硅基產品時代,英飛凌的溝槽型IGBT(例如TRENCHSTOP系列)和溝槽型的MOSFET就獨步天下。在碳化硅的時代,市面上大部分的SiC MOSFET都是平面型元胞,而英飛凌依然延續(xù)了溝槽路線。難道英飛凌除了“挖坑”,就不會干別的了嗎?非也。因為SiC材料獨有的特性,SiC MOSFET選擇溝槽結構,和IGBT是完全不同的思路。咱們一起來捋一捋。關于IGBT使用溝槽柵的原因及特點,可以參考下面兩篇文章:● 英飛凌芯片簡史● &n
關鍵字:
英飛凌 MOSFET
在本設計解決方案中,我們回顧了在工廠環(huán)境中運行的執(zhí)行器中使用的高邊開關電路的一些具有挑戰(zhàn)性的工作條件和常見故障機制。我們提出了一種控制器IC,該IC集成了各種安全功能,以監(jiān)控電路運行,并在發(fā)生這些情況時采取適當措施防止損壞。IGBT和MOSFET有一定的短路承受能力,也就是說,在一定的短路耐受時間(short circuit withstand time SCWT),只要器件短路時間不超過這個SCWT,器件基本上是安全的(超大電流導致的寄生晶閘管開通latch up除外,本篇不討論)。比如英飛凌這個820
關鍵字:
技術田地 MOSFET
電氣設備(如斷路器,電機或變壓器)的電流額定值,是指在某個電流下,器件本身達到的溫度可能損害器件可靠性和功能時的電流值。制造商雖然知道器件材料的溫度限值,但是他并不知道使用器件時的環(huán)境溫度。因此,他只能假設環(huán)境溫度。1、什么是電流額定值??電氣設備(如斷路器,電機或變壓器)的電流額定值,是指在某個電流下,器件本身達到的溫度可能損害器件可靠性和功能時的電流值。制造商雖然知道器件材料的溫度限值,但是他并不知道使用器件時的環(huán)境溫度。因此,他只能假設環(huán)境溫度。這就帶來了兩種后果:?? 每個電流
關鍵字:
MOSFET
super junction mosfet介紹
您好,目前還沒有人創(chuàng)建詞條super junction mosfet!
歡迎您創(chuàng)建該詞條,闡述對super junction mosfet的理解,并與今后在此搜索super junction mosfet的朋友們分享。
創(chuàng)建詞條
super junction mosfet相關帖子
super junction mosfet資料下載
super junction mosfet專欄文章
關于我們 -
廣告服務 -
企業(yè)會員服務 -
網站地圖 -
聯系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網安備11010802012473