咱的納米有幾 安(A)、伏(V)?(下)
解決問題:脈沖I-V測(cè)試 ——納米測(cè)試小技巧
本文引用地址:http://www.ex-cimer.com/article/120106.htm在對(duì)納米器件進(jìn)行電流-電壓(I-V)脈沖特征分析時(shí)通常需要測(cè)量非常小的電壓或電流,因?yàn)槠渲行枰謩e加載很小的電流或電壓去控制功耗或者減少焦耳熱效應(yīng)。這里,低電平測(cè)量技術(shù)不僅對(duì)于器件的I-V特征分析而且對(duì)于高電導(dǎo)率材料的電阻測(cè)量都非常重要。利于研究人員和電子行業(yè)測(cè)試工程師而言,這一功耗限制對(duì)當(dāng)前的器件與材料以及今后器件的特征分析提出了巨大的挑戰(zhàn)。
與微米級(jí)元件與材料的I-V曲線生成不同的是,對(duì)納米材料與器件的測(cè)量需要特殊的方法和技巧。I-V直流特征分析通常采用兩點(diǎn)式電氣測(cè)量技術(shù)來實(shí)現(xiàn)。這種方法的問題是如果提供電流源并測(cè)量電壓,那么所測(cè)得的電壓不僅包括器件上的壓降,而且包括測(cè)試引線和接觸點(diǎn)上的壓降。如果目標(biāo)是測(cè)量某個(gè)器件的電阻,采用普通歐姆表測(cè)量大于幾個(gè)歐姆的電阻,那么這種測(cè)量方法增加的電阻通常不成問題。但是,當(dāng)測(cè)量導(dǎo)電納米材料或元件的低電阻時(shí),如果采用兩點(diǎn)測(cè)量方法,即使使用脈沖測(cè)試,也難以獲得準(zhǔn)確的結(jié)果。
如果脈沖I-V特征分析或電阻測(cè)量涉及低電壓或低電阻,例如分子導(dǎo)線和半導(dǎo)體納米線,那么采用基于探針臺(tái)的四線開爾文測(cè)量方法將會(huì)得到更準(zhǔn)確的結(jié)果。開爾文測(cè)量法中采用了另外一套探針進(jìn)行探測(cè)。由于探測(cè)輸入端上具有很高的阻抗,因此流過這些探針的電流可以忽略不計(jì),從而測(cè)出的只有DUT兩端上的電壓降。這樣一來,電阻測(cè)量結(jié)果和生成的I-V曲線就更加精確。實(shí)現(xiàn)這一測(cè)量方法所需的源和測(cè)量功能的通常稱為源-測(cè)量單元(SMU),它能夠提供電源并測(cè)量直流電壓和電流。
脈沖測(cè)試可以借助直流測(cè)量中用到的一些簡(jiǎn)單低電平測(cè)量技術(shù)。要想在低電平下實(shí)現(xiàn)更有效的脈沖測(cè)量,脈沖測(cè)試技術(shù)應(yīng)該與行頻同步技術(shù)結(jié)合使用。通過同步脈沖測(cè)量與行頻,可以消除所有50/60Hz的行頻噪聲。
對(duì)于需要較高電壓靈敏度的應(yīng)用,即使是很小的誤差也不容忽視。避免這些誤差的一種常用方法是采用德爾塔方法。德爾塔是指“之前”和“當(dāng)前”讀數(shù)之間的差值,可用于校正直流偏移量。但是,直流偏移量常常會(huì)發(fā)生漂移。我們可以采用一種類似的稱為三點(diǎn)德爾塔的方法解決這一問題。其中,在脈沖之后再進(jìn)行第三次測(cè)量可以校正這種漂移。
還在發(fā)愁這些技巧沒有用武之地嗎?那就繼續(xù)關(guān)注我們納米話題的最后一講吧,你將了解到真正能夠測(cè)試納米器件的工具哦!
納米器件的測(cè)試工具
對(duì)于納米電子和半導(dǎo)體材料與薄膜,采用靈敏的電氣測(cè)量工具是十分必要的。它們提供的數(shù)據(jù)能夠幫助我們完全掌握新材料的電氣特性和新器件與元件的電氣性能。納米測(cè)量?jī)x器的靈敏度必須要高得多,因?yàn)樾枰獪y(cè)量的電流和電壓更低,而且很多納米材料還明顯表現(xiàn)出改善的特性,例如超導(dǎo)性。待測(cè)電流的幅值可能處于飛安量級(jí),電壓處于納伏量級(jí),電阻低至微歐量級(jí)。因此,測(cè)量技術(shù)和儀器必須盡可能地減少噪聲和其他誤差源,以免干擾信號(hào)。
具有0.1fA(即100埃安)和1μV分辨率的吉時(shí)利4200-SCS半導(dǎo)體特征分析系統(tǒng)就是這樣一種解決方案。其專門提供的脈沖I-V工具套件為脈沖I-V測(cè)量提供了雙通道脈沖發(fā)生與測(cè)量功能。如果結(jié)合內(nèi)部安裝的高速脈沖發(fā)生器和示波器,4200及其PIV工具套件能夠同時(shí)實(shí)現(xiàn)直流和脈沖I-V測(cè)試。
評(píng)論