GPS接收器測試
當(dāng)看到水平標(biāo)準(zhǔn)誤差時,可注意到標(biāo)準(zhǔn)誤差在 120 秒時快速增加。為了進(jìn)一步了解此現(xiàn)象,我們亦根據(jù)接收器的速度 (m/s) 與 C/N 值的 Proxy,繪出總水平標(biāo)準(zhǔn)誤差。而我們預(yù)先假設(shè):在沒有高功率衛(wèi)星的條件下,衛(wèi)星的 C/N 比值僅將影響接收器。因此,我們針對接收器所回傳 4 組最高高度的衛(wèi)星,平均其 C/N 比值而繪出另 1 組 C/N 的 Proxy。結(jié)果即如下列圖 30 所示?! ?/p>本文引用地址:http://www.ex-cimer.com/article/133865.htm
如圖 30 所示,在 120 秒時所發(fā)生的峰值水平錯誤 (標(biāo)準(zhǔn)誤差中),即與衛(wèi)星的 C/N 值產(chǎn)生直接關(guān)聯(lián),而與接收器的速度無關(guān)。此次取樣的標(biāo)準(zhǔn)誤差約為 2 公尺,且已低于其他取樣約 10 公尺的誤差。同時,我們可發(fā)現(xiàn)前 4 名的 C/N 平均值,由將近 45 dB-Hz 驟降至 41 dB-Hz。
上述的測試不僅說明 C/N 比值對定位精確度的影響,亦說明了已記錄 GPS 數(shù)據(jù)所能進(jìn)行的分析作業(yè)種類。在此測試中的 GPS 訊號驅(qū)動記錄作業(yè),是在中國深圳 (Shenzhen) 北方的惠州市 (Huizhou) 所進(jìn)行。并接著于德州奧斯汀 (Austin Texas) 測試實(shí)際的接收器。
結(jié)論
如整篇文件所看到的,目前已有多項(xiàng)技術(shù)可測試 GPS 接收器。雖然如敏感度的基本量測,最常用于生產(chǎn)測試中,但是此量測技術(shù)亦可用于檢驗(yàn)接收器的效能。這些測試技術(shù)雖然各有變化,但是均可于單一 PXI 系統(tǒng)中全數(shù)完成。事實(shí)上,GPS 接收器均可透過仿真或記錄的基頻 (Baseband) 波形進(jìn)行測試。透過整合的方式,工程師可執(zhí)行完整的 GPS 接收器功能測試:從敏感度到追蹤其可重復(fù)性。
參考數(shù)據(jù)
[1] Pratt, Bostonian, and Allnutt. Satellite Communications
[2] Navstar GPS User Equipment Introduction, September 1996
[3] Gu, Quzheng, RF System Design of Transceivers for Wireless Communications, Springer, 2005. Fundamentals
[4] Ward, Phillp W., Betz, John W., and Hegarty, Christopher J. Chapter 5: Satellite Signal Acquisition, Tracking and Data Demodulation, excerpt from: Understanding GPS: Principles and Applications by Elliot D. Kaplan, Artech House, 2005.
[5] Global Positioning System: Theory and Applications, Edited by Bradford W. Parkingson and James J. Spilker
[6] Braasch, Michael S. and Van Dierendonck, A. J. GPS Receiver Architectures and Measurements, Proceedings of the IEEE, 1999.
[7] Global Positioning System Standard Positioning Service Signal Specification, 1995.
[8] Global Positioning System Standard Positioning Service Signal Specification. Annex A, Standard Positing Service Performance Specification, 1995.
[9] Goldberg, Hans-Joachim. Atmel Whitepaper: Measuring GPS Sensitivity, 2007.
評論