選用合適DSP元件進(jìn)行低功率設(shè)計(jì)的方法與技巧
本文引用地址:http://www.ex-cimer.com/article/148310.htm
電壓域
多域的觀念同樣適用于電壓,設(shè)計(jì)人員可以根據(jù)效能需求將晶片分成多個(gè)部份,而每個(gè)部份使用不同的電壓。由于不同的電壓域必須以隔離電路分開,保護(hù)它們不受其它電壓域的損害,因此這種技術(shù)用于設(shè)計(jì)時(shí)必須相當(dāng)謹(jǐn)慎。它們還必須提供轉(zhuǎn)換電路,用來(lái)轉(zhuǎn)換跨越不同電壓域的訊號(hào)。多電壓域需要多組電源,然而晶片內(nèi)建穩(wěn)壓器的效率通常都比不上電路板層級(jí)的電源供應(yīng)器,因此這類設(shè)計(jì)多半需要由電路板供應(yīng)多組電源,這正是多電壓域技術(shù)的缺點(diǎn)之一:因?yàn)殡娐钒逍枰黾佣鄠€(gè)電源層,使得設(shè)計(jì)復(fù)雜性大幅提升。
電源閘控(power supply gating)
電源閘控又比時(shí)脈閘控技術(shù)更進(jìn)一步,它會(huì)直接切斷晶片閑置電路的電源。由于這種技術(shù)更復(fù)雜,又需要隔離電路,因此通常會(huì)用于比時(shí)脈閘控技術(shù)(以個(gè)別電路為單位)還大的范圍(多半以模組為單位)。這種技術(shù)和多電壓域技術(shù)也有所不同,其隔離電路會(huì)內(nèi)建于晶片,避免增加電路板設(shè)計(jì)的復(fù)雜性。
操作點(diǎn)技術(shù)的應(yīng)用范圍
上述技術(shù)是否有用,端賴使用者是根據(jù)電池壽命或最大功耗來(lái)評(píng)斷應(yīng)用系統(tǒng)的優(yōu)劣。某些技術(shù)幾乎對(duì)所有應(yīng)用都有幫助,例如多時(shí)脈域和多電壓域技術(shù)只需用到時(shí)脈頻率和電壓,所以任何應(yīng)用系統(tǒng)都可以裼謎飭街旨際?。域的誓恐粫?huì)受到這些技術(shù)所帶來(lái)的設(shè)計(jì)復(fù)雜性限制,多電壓域還可能受到電路板復(fù)雜性的影響。同樣地,多數(shù)元件的電路并非都是在最大負(fù)載條件下操作,因此時(shí)脈閘控技術(shù)(尤其裼米遠(yuǎn)控制方式的技術(shù))在許多應(yīng)用都能發(fā)揮作用。靜態(tài)電壓調(diào)整對(duì)所有應(yīng)用都有好處,因?yàn)?a class="contentlabel" href="http://www.ex-cimer.com/news/listbylabel/label/元件">元件只會(huì)在提供所需效能的必要電壓下操作。
應(yīng)用系統(tǒng)若以電池為電源,并提供多種操作模式,那么頻率調(diào)整和動(dòng)態(tài)電壓/頻率調(diào)整技術(shù)就能發(fā)揮最大作用;另一方面,這些方法對(duì)于重視最大功耗的應(yīng)用卻沒(méi)有太大用處。除此之外,電源閘控對(duì)于這些類似于基礎(chǔ)設(shè)施的應(yīng)用可能也沒(méi)有幫助,因?yàn)檫@類應(yīng)用的元件很少會(huì)有大片電路處于閑置狀態(tài)。
選擇適當(dāng)架構(gòu)
調(diào)整應(yīng)用功耗的另一種做法是選擇最適當(dāng)?shù)墓δ苷隙?、運(yùn)算處理單元和記憶體架構(gòu)。
L邊和記憶體的整合
元件和外部零件需要透過(guò)電路板互傳訊號(hào),有可能是系統(tǒng)功耗的主要來(lái)源,因?yàn)榻?jīng)由電路板傳送訊號(hào)需要比晶片功能整合還高的電壓,電路板訊號(hào)線的寄生電容也會(huì)造成功耗。
運(yùn)算處理單元的調(diào)整
以系統(tǒng)單晶片為主的現(xiàn)代元件可以選擇不同類型的運(yùn)算處理單元:
專門執(zhí)行訊號(hào)和影像處理演算法的處理器,內(nèi)建多組應(yīng)用最佳化硬體運(yùn)算邏輯單元和乘法器,能以極高效率執(zhí)行標(biāo)準(zhǔn)訊號(hào)處理演算法。這類元件具備完整的可程式能力,可以輕松支援未來(lái)出現(xiàn)的新標(biāo)準(zhǔn)。
通用處理器
ARM處理器就是例子,其主要用來(lái)執(zhí)行一般性功能,例如圖形化使用者界面、網(wǎng)路堆疊(network stack)和整體系統(tǒng)控制。由于它們不必整合DSP功能所需的運(yùn)算處理單元,所以執(zhí)行一般性功能時(shí)功耗就比較小。
特殊用途硬體協(xié)同處理器
只包含特定功能所需的算術(shù)單元和控制電路。如果應(yīng)用功能的定義很明確,又不太可能改變,即可將該功能整合到硬體協(xié)同處理器。舉例來(lái)說(shuō),整合了Viterbi和Turbo處理器的DSP,便可專門執(zhí)行3G基地臺(tái)標(biāo)準(zhǔn)所要求的前向錯(cuò)誤更正(FEC)。
今日的系統(tǒng)單晶片多半會(huì)整合前述多種運(yùn)算處理單元。有些架構(gòu)會(huì)裼枚嘀植煌類型的運(yùn)算處理單元,然后將不同的功能交給最適當(dāng)?shù)暮诵膱?zhí)行。DSP可以高效率執(zhí)行訊號(hào)處理,RISC則適合處理系統(tǒng)控制和使用者界面等工作。由于每個(gè)運(yùn)算處理單元都以實(shí)際所需的速度執(zhí)行最擅長(zhǎng)的工作,故能將功耗減至最小;相形之下,若只用一個(gè)運(yùn)算處理單元執(zhí)行所有功能,其時(shí)脈頻率就必須更高,同時(shí)還要包含更多硬體,其中有些部份可能經(jīng)常處于閑置狀態(tài)。換言之,這類設(shè)計(jì)的工作效率必然較低,而在工作效率就等于電源效率的情形下,其功耗必然更高。
記憶體系統(tǒng)的選擇
元件若想避免存取外部記憶體,也可將應(yīng)用所需的記憶體全部整合至晶片內(nèi)。然而視訊或影像系統(tǒng)之類的應(yīng)用卻需要極為龐大的記憶體,將它們?nèi)空现辆璧某杀究赡苓h(yuǎn)超過(guò)直接在電路板上增加DRAM的費(fèi)用。這類應(yīng)用可以利用快取架構(gòu)來(lái)減少外部記憶體的存取次數(shù),進(jìn)行降低系統(tǒng)總功耗。
就算元件包含全部所需的記憶體,快取也能幫助它們降低功耗。這類元件可以將少量的第一層快取記憶體直接連線到處理器,使其儲(chǔ)存主記憶體中最常用的內(nèi)容。主記憶體則是第二層記憶體,其速度通常較慢,所用的記憶體方塊也比第一層快取更省電。由于處理器的多數(shù)存取動(dòng)作都會(huì)命中第一層快取記憶體,這些記憶體又裼玫縟葜到閑〉慕峁梗所以每次存取動(dòng)作的功耗就變得更低。
評(píng)論