單對象人臉識別技術(shù)研究
完成訓(xùn)練過程并獲得待測樣本的特征后,即可進行人臉識別,本文采用歐氏距離進行分類。
5.1 計算樣本與平均臉的歐氏距離
用m和x表示平均臉和樣本的特征向量,則樣本與平均臉的歐氏距離為:
其中mk表示平均臉的第k個特征向量,xk表示待測樣本的第k個特征向量。身份認證時,計算待測樣本與平均臉的歐氏距離,并與特定對象的自適應(yīng)閾值進行比較,將小于閾值的樣本判為該對象的人臉,即認證通過。
5.2 自適應(yīng)閾值的選取
與典型的人臉識別方法不同,單對象人臉認識沒有人臉數(shù)據(jù)庫,不能用距離最小作為判據(jù),只能用閾值作為判別依據(jù)。閾值的選取應(yīng)兼顧識別率和識別的準確性,實驗中我們?nèi)∮?xùn)練樣本與平均臉的歐氏距離平均值作為分類閾值,即:
其中,N為訓(xùn)練樣本數(shù),此值不宜太小;di為第i個樣本與平均臉之間的歐氏距離。
6 、實驗結(jié)果及分析
本文選用西安交通大學(xué)人工智能與機器人研究所東方人臉庫(AIR)的視點子庫進行實驗,該數(shù)據(jù)庫包括每位被拍攝人在19個不同視點角度下(10°為一個單位)拍攝的中性表情圖像。實驗包括類內(nèi)測試和類間測試。類內(nèi)測試用于考查單對象人臉識別的識別率,而類間測試則用于考查誤識率。隨機選取5個人,每人用7幅圖像(-30°~+30°)作為訓(xùn)練樣本,分別計算平均臉和自適應(yīng)閾值、類內(nèi)識別率和類內(nèi)距離,另外再選取50個人,每人一幅正面圖像作為類間測試樣本,分別對5個對象進行類間測試,實驗結(jié)果如表1所示。從實驗數(shù)據(jù)可以得出如下結(jié)果:
(1)類內(nèi)識別率不高,原因是自適應(yīng)閾值為訓(xùn)練樣本與平均臉的歐氏距離平均值,訓(xùn)練樣本中的部分圖像不能被識別。在實驗室中,我們通過提示被試注視攝像頭、適當(dāng)調(diào)整姿態(tài)等措施提高圖像的拍攝質(zhì)量,使識別率得到了顯著的改善。
(2)在50人的類間測試中,最小距離均大于閾值,即錯誤識別率為0。實驗室的現(xiàn)場測試中也得到了相同的結(jié)果。
(3)文中提出的單對象人臉識別方法能夠成功地識別特定對象,并能準確地排除其他對象,可用于軟件保護、計算機安全等系統(tǒng)的身份驗證。
7 、結(jié) 語
本文提出的單對象人臉識別方法,針對單對象人臉識別的特點,綜合考慮了識別率和認證的準確性,運用平均臉方法有效地縮小類內(nèi)距離,同時擴大類間距離,取訓(xùn)練樣本與平均臉的歐氏距離平均值作為分類閾值。實驗結(jié)果表明,該方法具有識別有效性和認證可靠性,在單對象人臉識別的實際應(yīng)用中是一種可行的方法。
評論