基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的電加熱爐爐溫PID控制研究
摘 要:以電加熱爐為控制對象,提出一種基于BP神經(jīng)網(wǎng)絡(luò)的PID控制策略。針對BP網(wǎng)絡(luò)學(xué)習(xí)速度的緩慢性及較差的泛化能力,受Fletcher-Reeves線性搜索方法的指引,對傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn),改善算法在訓(xùn)練過程中的收斂特性。最后仿真結(jié)果證明了該控制策略的有效性。
關(guān)鍵詞:電加熱爐;BP神經(jīng)網(wǎng)絡(luò);PID控制
1 基于BP神經(jīng)網(wǎng)絡(luò)的PID控制
BP算法是在導(dǎo)師指導(dǎo)下,適合于多層神經(jīng)元網(wǎng)絡(luò)的一種學(xué)習(xí),它是建立在梯度下降法的基礎(chǔ)上的。理論證明,含有一個(gè)隱含層的BP網(wǎng)絡(luò)可以實(shí)現(xiàn)以任意精度近似任何連續(xù)非線性函數(shù)。
BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示,由三層(輸人層、隱含層、輸出層)網(wǎng)絡(luò)組成,使輸出層的神經(jīng)元狀態(tài)對應(yīng)PID控制器的三個(gè)可調(diào)參數(shù)Kp、Ki、Kd。通過神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)、加權(quán)系數(shù)調(diào)整使神經(jīng)網(wǎng)絡(luò)輸出對應(yīng)于某種最優(yōu)控制律下的PID控制器參數(shù)。
基于BP(Baekpropgation)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)如圖2所示,控制器由常規(guī)的PID控制器和神經(jīng)網(wǎng)絡(luò)兩部分組成,常規(guī)PID控制器直接對被控對象進(jìn)行閉環(huán)控制,并且其控制參數(shù)為Kp、Ki、Kd在線調(diào)整方式;神經(jīng)網(wǎng)絡(luò)根據(jù)系統(tǒng)的運(yùn)行狀態(tài),調(diào)節(jié)PID控制器的參數(shù),以期達(dá)到某種性能指標(biāo)的最優(yōu)化,使輸出層神經(jīng)元的輸出對應(yīng)于PID控制器的三個(gè)可調(diào)參數(shù)Kp、Ki、Kd。通過神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)、加權(quán)系數(shù)的調(diào)整,使神經(jīng)網(wǎng)絡(luò)輸出對應(yīng)于某種最優(yōu)控制規(guī)律下的PID控制器參數(shù)。
2 改進(jìn)型BP神經(jīng)網(wǎng)絡(luò)
基本BP神經(jīng)網(wǎng)絡(luò)主要存在以下兩個(gè)缺陷:其一,傳統(tǒng)BP網(wǎng)絡(luò)是一個(gè)非線形優(yōu)化問題,不可避免的存在局部極小問題。網(wǎng)絡(luò)的權(quán)值和閥值沿局部改善的方向不斷修正,力圖達(dá)到使誤差函數(shù) 最小化的全局解,但實(shí)際上常得到的是局部最優(yōu)點(diǎn);其二,學(xué)習(xí)過程中,誤差函數(shù)下降慢,學(xué)習(xí)速度緩,易出現(xiàn)一個(gè)長時(shí)間的誤差坦區(qū),即出現(xiàn)平臺。
目前已有不少人對此提出改進(jìn)的方法。如在修改權(quán)值中加入“動量項(xiàng)”,采用Catchy誤差估計(jì)器代替?zhèn)鹘y(tǒng)的LMS誤差估計(jì)器等。本文在此探討通過變
換梯度來加快網(wǎng)絡(luò)訓(xùn)練的收斂速度的共軛梯度算法,利用這種算法改善收斂速度與收斂性能。改進(jìn)共軛梯度算法在不增加算法復(fù)雜性的前提下可以提高收斂速度,并且可以沿共軛方向達(dá)到全局最優(yōu)即全局極值點(diǎn)。它要求在算法進(jìn)行過程中采用線性搜索,本文采用Fletcher-Reeves線性搜索方法,以保證算法的收斂速度。
將改進(jìn)共軛梯度法應(yīng)用于BP網(wǎng)絡(luò)的控制算法如下:
評論