利用開關(guān)器件提高PFC效率的實(shí)現(xiàn)
為了滿足能源之星(ENERGY STAR)等規(guī)范的要求以及消費(fèi)者降低碳排放的愿望,功率電子產(chǎn)品設(shè)計團(tuán)隊(duì)正在不斷努力提高系統(tǒng)效率,以求盡量接近額定100%效率的終極目標(biāo)。此外,目前調(diào)節(jié)器實(shí)際上需要在電源第一級采用功率因數(shù)校正(Power Factor Correction,PFC),以盡量提高功率因數(shù)(PF),減少電力線的損耗。功率因數(shù)的大小與電路的負(fù)荷性質(zhì)有關(guān), 如白熾燈泡、電阻爐等電阻負(fù)荷的功率因數(shù)為1,一般具有電感性負(fù)載的電路功率因數(shù)都小于1.功率因數(shù)是電力系統(tǒng)的一個重要的技術(shù)數(shù)據(jù)。功率因數(shù)是衡量電氣設(shè)備效率高低的一個系數(shù)。功率因數(shù)低,說明電路用于交變磁場轉(zhuǎn)換的無功功率大, 從而降低了設(shè)備的利用率,增加了線路供電損失。所以,供電部門對用電單位的功率因數(shù)有一定的標(biāo)準(zhǔn)要求。
本文引用地址:http://www.ex-cimer.com/article/175005.htm方法之一就是運(yùn)用被動PFC的低成本解決方案,但是這一方案需要一個笨重的大體積LC濾波器。主動PFC廣泛用于減少系統(tǒng)濾波器電感線圈的尺寸與重量。因此,增加效率與功率密度是主動PFC方案的關(guān)鍵設(shè)計因素。對于大功率交-直流變換器來說,連續(xù)傳導(dǎo)模式(CCM)升壓型主動PFC拓?fù)浣Y(jié)構(gòu)更受歡迎。與非連續(xù)傳導(dǎo)模式(DCM)和臨界傳導(dǎo)模式CRM)不同的是,CCM PFC產(chǎn)生的波紋電流更小,可簡化EMI濾波器設(shè)計以及保持小負(fù)荷下的穩(wěn)定性。因此CCM PFC不僅廣泛用于服務(wù)器與遠(yuǎn)程通信的電源供給,而且可用于平面顯示器的電源供給。
按照功率變換器PFC改善功率密度的設(shè)計趨勢,設(shè)計人員必須減少系統(tǒng)損耗與整個系統(tǒng)的尺寸、重量,或者增加開關(guān)頻率,集成有源元件。
一種新型的MOSFET/二極管組合可以實(shí)現(xiàn)較高的功效,減少開關(guān)損耗。并且通過降低MOSFET的導(dǎo)通電阻,提高其開關(guān)速度完成CCM PFC控制器的設(shè)計。上述性能的改善,都離不開一種具有低反向恢復(fù)電荷(QRR)的SiC肖特基二極管。下面在一個400W CCM PFC應(yīng)用當(dāng)中,將其與常用的硅Si二極管/平面型MOSFET的組合方式進(jìn)行比較,可看出本文所述MOSFET/二極管組合的優(yōu)點(diǎn)。
與DCM升壓電感的恒流相比,CCM下的PFC具備更多優(yōu)勢。通過EMI濾波的電流要比DCM或CRM中小得多,因此這些優(yōu)勢在大功率設(shè)計中更為明顯。在一般情況下,MOSFET的功率損耗通常由它的開關(guān)損耗決定,事實(shí)上開關(guān)損耗是由分立升壓二極管的反向回縮特性所引起的,而上述這個根源取決于工作電流與二極管溫度。這些因素導(dǎo)致了二極管與MOSFET功率損耗的增加,進(jìn)而影響到變流器的性能。
圖1與圖2所示為CCM PFC的工作情況,包括電流和電壓波形,可看出低QRR對PFC二極管的重要性。一開始,二極管D1引入輸入電流,同時還有二極管中的少量積累電荷。在開關(guān)導(dǎo)通的過程中,MOSFET M1導(dǎo)通,二極管D1關(guān)斷。巨大的導(dǎo)通電流流過MOSFET,除了經(jīng)整流的輸入電流以外還包括D1的反向恢復(fù)電流與放電電流。一般情況下,電流的變化率通過M1的封裝電感及其他存在于外部回路的寄生電感進(jìn)行限制。二極管電流波形的負(fù)值區(qū)域便是反向恢復(fù)電荷QRR,其中時間間隔長度(t0到t2)是反向恢復(fù)時間tRR.在t0與t1之間時,二極管保持正向偏置,因此MOSFET電壓為VOUT+VF.在t1時間,p-n結(jié)附近的積累電荷被耗盡。二極管反向電流持續(xù)存在,直至消除所有殘留的少量積累電荷。在t2時間,這些電流基本上為零,二極管在反向偏置條件下達(dá)到穩(wěn)態(tài)。[1]這些由硅Si二極管反向恢復(fù)特性所引起功率損耗,限制了CCM PFC的功效與開關(guān)頻率。
CCM PFC中最值得關(guān)注的是減少M(fèi)OSFET與升壓二極管的傳導(dǎo)性與開關(guān)損耗。如果您想設(shè)計一高性能的、且具有較小尺寸與較高的工作頻率的CCM PFC,其MOSFET要求如下:較小的導(dǎo)通電阻以減少傳導(dǎo)損耗;低CGD以減少開關(guān)損耗;低QG以減少柵極驅(qū)動功率;低熱阻。同樣,升壓二極管要求如下:tRR時間短以減少M(fèi)OSFET導(dǎo)通損耗;低QRR以減少二極管開關(guān)損耗;小VF以減少傳導(dǎo)損耗;溫和的反向回縮特性以減少EMI;低熱阻。
MOSFET比較
金屬-氧化層-半導(dǎo)體-場效晶體管,簡稱金氧半場效晶體管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一種可以廣泛使用在模擬電路與數(shù)字電路的場效晶體管(field-effect transistor)。MOSFET依照其通道的極性不同,可分為n-type與p-type的MOSFET,通常又稱為NMOSFET與PMOSFET,其他簡稱尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。今日半導(dǎo)體元件的材料通常以硅(silicon)為首選,但是也有些半導(dǎo)體公司發(fā)展出使用其他半導(dǎo)體材料的制程,當(dāng)中最著名的例如IBM使用硅與鍺(germanium)的混合物所發(fā)展的硅鍺制程(silicon-germanium process, SiGe process)。而可惜的是很多擁有良好電性的半導(dǎo)體材料,如砷化鎵(gallium arsenide, GaAs),因?yàn)闊o法在表面長出品質(zhì)夠好的氧化層,所以無法用來制造MOSFET元件。
圖3所示為Fairchild Semiconductor(飛兆半導(dǎo)體)公司的SuperFET 600-V MOSFET的橫截面,它運(yùn)用了電荷平衡技術(shù)(右),另一個是傳統(tǒng)的平面型MOSFET(左)。一開始便引起我們注意的差異是SuperFET元器件內(nèi)部的加厚p型柱。SuperFET所提供的低導(dǎo)通電阻所起的作用(>90%)在于N-型漂移區(qū)。加厚P型柱的作用是限制MOSFET輕摻雜外延區(qū)的電場。相比傳統(tǒng)的平面MOSFET,n-型外延層的電阻率急劇減少,同時保持擊穿電壓不變。高壓MOSFET的導(dǎo)通電阻降低后,可比傳統(tǒng)的
MOSFET的開關(guān)特性隨著它的寄生電容的改變而改變。例如高壓SuperFET有源面積的減小直接導(dǎo)致輸入電容的減小,因此減少了柵極電荷。這導(dǎo)致導(dǎo)通延遲時間變短,需要的驅(qū)動功率變小。當(dāng)我們比較SuperFET與平面MOSFET的電容時,VDS一接近10V(對SuperFET來說)CGD的值急速地減小,在導(dǎo)通的開關(guān)瞬態(tài),較小的輸出電容可減小放電損耗。因?yàn)檫@項(xiàng)技術(shù)的目的是使元件能夠承受住高速開關(guān)瞬態(tài)下的電壓(dv/dt)與電流(di/dt),這些元器件能夠在較高的頻率下可靠地工作,由于折算電阻的影響其品質(zhì)因數(shù)(FOM)只相當(dāng)于同等級平面器件的三分之一。
使用SuperFET的好處之一是它的低通導(dǎo)電阻減少了功率損耗。這允許設(shè)計人員可以不使用昂貴的冷卻系統(tǒng)并且減少了散熱器的尺寸。它的低柵極電荷同樣使得它更容易且更有效地在高頻下驅(qū)動。這些特性都減少了系統(tǒng)的整體功率損耗。
二極管比較
二極管又稱晶體二極管,簡稱二極管(diode);它只往一個方向傳送電流的電子零件。它是一種具有1個零件號接合的2個端子的器件,具有按照外加電壓的方向,使電流流動或不流動的性質(zhì)。晶體二極管為一個由p型半導(dǎo)體和n型半導(dǎo)體形成的p-n結(jié),在其界面處兩側(cè)形成空間電荷層,并建有自建電場。當(dāng)不存在外加電壓時,由于p-n 結(jié)兩邊載流子濃度差引起的擴(kuò)散電流和自建電場引起的漂移電流相等而處于電平衡狀態(tài)。二極管的管壓降:硅二極管(不發(fā)光類型)正向管壓降0.7V,鍺管正向管壓降為0.3V,發(fā)光二極管正向管壓降為隨不同發(fā)光顏色而不同。 主要有三種顏色,具體壓降參考值如下:紅色發(fā)光二極管的壓降為2.0--2.2V,黃色發(fā)光二極管的壓降為1.8-2.0V,綠色發(fā)光二極管的壓降為3.0-3.2V,正常發(fā)光時的額定電流約為20mA.二極管的電壓與電流不是線性關(guān)系,所以在將不同的二極管并聯(lián)的時候要接相適應(yīng)的電阻。
硅Si肖特基二極管常作為小于300V的中低壓應(yīng)用,因?yàn)樵诼╇娏髋c正向?qū)▔航当3衷谌菰S的等級之內(nèi)時,它們顯示出很低的開關(guān)損耗與正的溫度系數(shù)。然而這類二極管對于高壓應(yīng)用來說并不理想,因?yàn)楦邏簯?yīng)用中漏電流與正向?qū)▔航狄叩亩?。比較起來,SiC肖特基二極管在高壓領(lǐng)域更有吸引力。因?yàn)樘蓟璧膿舸╇妶鍪枪璧?0倍。此外SiC的寬帶隙容許較高的工作溫度[2].另外,在開關(guān)狀態(tài)轉(zhuǎn)換過程中,SiC肖特基二極管沒有反向恢復(fù)電流,這是因?yàn)樗鼪]有額外的少數(shù)載流子。雖然寄生結(jié)電容確實(shí)產(chǎn)生了位移電流但可以忽略不計。因此在CCM PFC應(yīng)用中,由于SiC肖特基二極管優(yōu)越的反向回縮特性,可不依賴于元器件的溫度與正向傳導(dǎo)特性,使得SiC肖特基二極管與硅Si二極管相比能夠提供更大的功效。
評論