跟電源專家陶顯芳學(xué)電源技術(shù)(一):漏感與分布電容對輸出波形的影響(上)
國內(nèi)知名電源技術(shù)專家陶顯芳不辭勞苦,在雙節(jié)期間仍堅持為各位電源工程師或愛好者排憂解難,寫出一些工程師們非常關(guān)心的技術(shù)問題和常見的電源問題及解決方法。
本文引用地址:http://www.ex-cimer.com/article/176105.htm
圖1是單激式開關(guān)電源的基本原理圖。圖中,T為開關(guān)變壓器,N1和N2分別為開關(guān)變壓器初、次級線圈;LS為開關(guān)變壓器的漏感, 為開關(guān)變壓器初級線圈的勵磁電感;CS為開關(guān)變壓器初級線圈的分布電容,RL為開關(guān)變壓器次級線圈的輸出負(fù)載,Q1為電源開關(guān)管。
變壓器初級線圈或次級線圈的分布電容Cs可按下式進(jìn)行計算:
?。?)
式中, 為第 i層與 i+1層線圈之間的靜態(tài)電容,i = 1、2、3、• • •、n ,n為所求總分布電容的變壓器初級線圈或次級線圈的層數(shù); gi為第 i層與 i+1層線圈之間的平均周長; Kui為第i 層與i +1層線圈之間分布電容的動態(tài)系數(shù), ,它與加到電容兩端的電壓有關(guān), Ku是一個小于1的系數(shù);
Ui為第i層與 i+1層線圈之間的標(biāo)準(zhǔn)電位差,其值一般等于相鄰兩層線圈工作電壓之和,即Ui=2U/n: ,U為變壓器初級線圈或次級線圈兩端的工作電壓;Uai 、Ubi 分別為第 i層與i +1層線圈之間 x = 0和x = h 處對應(yīng)的電位差;當(dāng)線圈層間按S繞法時,Uai = 0,Ubi =Ui;當(dāng)線圈層間按Z繞法時, Uai= Ubi=1/2Ui 。
如果不考慮變壓器次級線圈對初級線圈的影響,對于一個功率大約為100瓦的開關(guān)變壓器,其初級線圈的分布電容大約在100~2000微微法之間;如果把次級線圈的分別電容也考慮進(jìn)去,總的分布電容可能要大一倍左右,因?yàn)槌?、次級線圈分布電容的轉(zhuǎn)換比是平方的關(guān)系。因此,分布電容對輸出波形的影響是很大的。
根據(jù)變壓器的工作原理,圖1中的開關(guān)變壓器還可以等效為圖2所示電路。
在圖2中,Ls為漏感,漏感也稱漏磁電感,或稱分布電感;Cs為分布電容(總分布電容), 為勵磁電感,R為等效負(fù)載電阻。設(shè)開關(guān)變壓器初級線圈的電感為L,則L=Ls+Lu ;而分布電容Cs,則包括次級線圈等效到初級線圈一側(cè)的分布電容,即,次級線圈的分布電容也要等效到初級線圈回路中;同理,等效負(fù)載電阻R,就是次級線圈的負(fù)載RL被等效到初級線圈回路中的電阻。
設(shè)次級線圈的分布電容為C2,等效到初級線圈后的分布電容為C1,則有下面關(guān)系式:
(2)
上式中, Wc2為次級線圈分布電容C2存儲的能量, Wc1為C2等效到初級線圈后的分布電容C1存儲的能量;U1、U2分別為初、次級線圈的電壓,U2 = nU1,n = N2/N1為變壓比,N1 、N2分別為初、次級線圈的匝數(shù)。由此可以求得C1為:
(3)
?。?)和(3)式的計算方法不但可以用于對初、次級線圈分布電容等效電路的換算,同樣可以用于對初、次級線圈電路中其它電容等效電路的換算,以及用于對負(fù)載電阻的換算。所以,C2亦可以是次級線圈電路中的任意電容,C1為C2等效到初級線圈電路中的電容。
由此可以求得圖2中,變壓器的總分布電容Cs為:
(4)
?。?)式中,Cs為變壓器的總分布電容,Cs1為變壓器初級線圈的分布電容;而C1為次級線圈電路中所有電容等效到初級線圈電路中的電容;C2為次級線圈電路中所有電容(包括分布電容與電路中的電容);n = N2/N1為變壓比。
開關(guān)變壓器與一般變壓器等效電路區(qū)別#e#
雖然看起來,圖2開關(guān)變壓器的等效電路與一般變壓器的等效電路沒有根本的區(qū)別,但開關(guān)變壓器的等效電路一般是不能用穩(wěn)態(tài)電路進(jìn)行分析的;即:圖2中的等效負(fù)載電阻R不是一個固定參數(shù),它會隨著開關(guān)電源的工作狀態(tài)不斷改變。例如,在反激式開關(guān)電源中,當(dāng)開關(guān)管導(dǎo)通時,開關(guān)變壓器是沒有功率輸出的,即負(fù)載電阻R等于無限大;而對于正激式開關(guān)電源,當(dāng)開關(guān)管導(dǎo)通時,開關(guān)變壓器是有功率輸出的,即負(fù)載電阻R既不等于無限大,也不等于0 。因此,分布電感與分布電容對正激式開關(guān)電源和反激式開關(guān)電源工作的影響是不一樣的。
圖3是開關(guān)變壓器與電源開關(guān)管連接時的工作原理圖。圖3中,Q1為開關(guān)管,Cds為開關(guān)管漏極和源極之間的分布電容,Cgs為開關(guān)管柵極和源極之間的分布電容。值得說明的是,這里的Cgs和Cds都不是一個單純性質(zhì)的電容,它只是在開關(guān)管的導(dǎo)通和關(guān)斷的一瞬間,其阻抗的變化過程與電容(或電感)的充放電過程很類似;而它的基本性質(zhì)實(shí)際上還是屬于電阻,因?yàn)樗鼤p耗功率。
當(dāng)開關(guān)管開始導(dǎo)通時,外電路給柵極(絕緣柵場效應(yīng)管)加一正電壓,通過靜電感應(yīng),開關(guān)管耗盡層中的載流子(電子)在電場的作用下會重新進(jìn)行分布,耗盡層中載流子濃度按指數(shù)規(guī)律不斷增加,這個過程相當(dāng)于對電容Cgs進(jìn)行充電;隨著耗盡層中載流子的重新分布,耗盡層的厚度也相應(yīng)增加,其結(jié)果是耗盡層的電阻由大變小。
因此,當(dāng)開關(guān)管剛開始導(dǎo)通時,流過開關(guān)管的電流是由小變大,這個過程,與在電感兩端加一電壓方波時,流過電感的電流由小變大很相似;所以,在開關(guān)管剛導(dǎo)通的一瞬間,開關(guān)管的漏極和源極之間可以等效成一個電感Lds。由于這個電感相對分布電感Ls和勵磁電感 來說很小,所以圖3中沒有畫出。
圖4是圖3中的開關(guān)管Q1導(dǎo)通時對應(yīng)的等效工作原理圖。在圖4中,電感Lds為開關(guān)管Q1導(dǎo)通時的等效電感,當(dāng)開關(guān)管Q1導(dǎo)通時,開關(guān)管的內(nèi)部電阻將隨時間由大逐步變小,它的作用好像一個電感,因此,當(dāng)開關(guān)管Q1導(dǎo)通時,開關(guān)管可以等效成一個理想的開關(guān)與一個電感串聯(lián)。但這個電感屬于電阻性質(zhì),它會損耗能量,它不像實(shí)際中的電感那樣可以儲存能量(磁能),它實(shí)際上屬于一個阻值由大變小的可變電阻,但如果用一個可變電阻來表示,在計算過程中將會很復(fù)雜,并且在開關(guān)管Q1導(dǎo)通的變化過程中,用一個可變電阻來表示也沒有用一個電感來表示顯得形象。
電容的相關(guān)文章:電容屏和電阻屏的區(qū)別
評論