電源模塊的電磁干擾設(shè)計(jì)
開(kāi)關(guān)節(jié)點(diǎn)的物理回路面積對(duì)于控制電磁干擾也非常重要。通常,出于PCB面積的考慮,設(shè)計(jì)者都希望結(jié)構(gòu)越緊湊越好,但是許多設(shè)計(jì)人員并不知道哪部分布局對(duì)電磁干擾的影響最大。回到之前的降壓穩(wěn)壓器例子上,該例中有兩個(gè)回路節(jié)點(diǎn)(如圖4和圖5所示),它們的尺寸會(huì)直接影響到電磁干擾水平。
圖4 降壓穩(wěn)壓器模型1
圖5 降壓穩(wěn)壓器模型2
Ott關(guān)于不同模式電磁干擾水平的公式(2)示意了回路面積對(duì)電路電磁干擾水平產(chǎn)生的直接線性影響。
E=263×10-16(f2AI)(1/r) (2)
輻射場(chǎng)正比于下列參數(shù):涉及的諧波頻率(f,單位Hz)、回路面積(A,單位m2)、電流(I)和測(cè)量距離(r,單位m)。
此概念可以推廣到所有利用梯形波形進(jìn)行電路設(shè)計(jì)的場(chǎng)合,不過(guò)本文僅討論電源設(shè)計(jì)。參考圖4中的交流模型,研究其回路電流流動(dòng)情況:起點(diǎn)為輸入電容器,然后在Q1導(dǎo)通期間流向Q1,再通過(guò)L1進(jìn)入輸出電容器,最后返回輸入電容器中。
當(dāng)Q1關(guān)斷、Q2導(dǎo)通時(shí),就形成了第二個(gè)回路。之后存儲(chǔ)在L1內(nèi)的能量流經(jīng)輸出電容器和Q2,如圖5所示。這些回路面積控制對(duì)于降低電磁干擾是很重要的,在PCB走線布線時(shí)就要預(yù)先考慮清器件的布局問(wèn)題。當(dāng)然,回路面積能做到多小也是有實(shí)際限制的。
從公式2可以看出,減小開(kāi)關(guān)節(jié)點(diǎn)的回路面積會(huì)有效降低電磁干擾水平。如果回路面積減小為原來(lái)的3倍,電磁干擾會(huì)降低9.5dB,如果減小為原來(lái)的10倍,則會(huì)降低20 dB。設(shè)計(jì)時(shí),最好從最小化圖4和圖5所示的兩個(gè)回路節(jié)點(diǎn)的回路面積著手,細(xì)致考慮器件的布局問(wèn)題,同時(shí)注意銅線連接問(wèn)題。盡量避免同時(shí)使用PCB的兩面,因?yàn)橥讜?huì)使電感顯著增高,進(jìn)而帶來(lái)其他問(wèn)題。
恰當(dāng)放置高頻輸入和輸出電容器的重要性常被忽略。若干年以前,我所在的公司曾把我們的產(chǎn)品設(shè)計(jì)轉(zhuǎn)讓給國(guó)外制造商。結(jié)果,我的工作職責(zé)也發(fā)生了很大變化,我成了一名顧問(wèn),幫助電源設(shè)計(jì)新手解決文中提到的一系列需要權(quán)衡的事宜及其他眾多問(wèn)題。這里有一個(gè)含有集成鎮(zhèn)流器的離線式開(kāi)關(guān)的設(shè)計(jì)例子:設(shè)計(jì)人員希望降低最終功率級(jí)中的電磁干擾。我只是簡(jiǎn)單地將高頻輸出電容器移動(dòng)到更靠近輸出級(jí)的位置,其回路面積就大約只剩原來(lái)的一半,而電磁干擾就降低了約6dB。而這位設(shè)計(jì)者顯然不太懂得其中的道理,他稱那個(gè)電容為“魔法帽子”,而事實(shí)上我們只是減小了開(kāi)關(guān)節(jié)點(diǎn)的回路面積。
還有一點(diǎn)至重要的,新改進(jìn)的電路產(chǎn)生的問(wèn)題可能比原先的還要嚴(yán)重。換句話說(shuō),盡管延長(zhǎng)過(guò)渡時(shí)間可以減少電磁干擾,但其引起的熱效應(yīng)也隨之成為重要的問(wèn)題。有一種控制電磁干擾的方法是用全集成電源模塊代替?zhèn)鹘y(tǒng)的直流到直流轉(zhuǎn)換器。電源模塊是含有全集成功率晶體管和電感的開(kāi)關(guān)穩(wěn)壓器,它和線性穩(wěn)壓器一樣可以很輕松地融入系統(tǒng)設(shè)計(jì)中。模塊開(kāi)關(guān)節(jié)點(diǎn)的回路面積遠(yuǎn)小于相似尺寸的穩(wěn)壓器或控制器,電源模塊并不是新生事物,它的面世已經(jīng)有一段時(shí)間了,但是直到現(xiàn)在,由于一系列問(wèn)題,模塊仍無(wú)法有效散熱,且一經(jīng)安裝后就無(wú)法更改。
評(píng)論