采用SEPIC轉(zhuǎn)換器構(gòu)建偏壓電源
您想過使用一個單端初級電感轉(zhuǎn)換器 (SEPIC) 拓?fù)浣Y(jié)構(gòu)來構(gòu)建偏壓電源嗎?如果您不需要隔離,那么這種想法還是行的通的。SEPIC 擁有諸多特性,從而使其比非隔離式反向結(jié)構(gòu)更具吸引力。控制 MOSFET 和輸出整流器振鈴可減少電磁干擾 (EMI) 和電壓應(yīng)力。在許多情況下,這使您能夠使用更低電壓的部件,從而降低成本并提高效率。另外,多輸出 SEPIC 可改善輸出之間的交叉穩(wěn)壓,從而消除對于線性穩(wěn)壓器的需求。圖 1 顯示的是一個 SEPIC 轉(zhuǎn)換器,像反向轉(zhuǎn)換器一樣它具有最少的部件數(shù)量。實際上,如果去除 C1,該電路就是一個反向轉(zhuǎn)換器。該電容可提供對其所連接半導(dǎo)體的電壓鉗位控制。當(dāng) MOSFET 開啟時,該電容通過 MOSFET 對 D1 的反向電壓進行鉗位控制。當(dāng)電源開關(guān)關(guān)閉時,在 D1 導(dǎo)電以前漏電壓一直上升。在關(guān)閉期間,C1 通過 D1 和 C2 對 MOSFET 漏電壓進行鉗位控制。具有多個輸出端的 SEPIC 轉(zhuǎn)換器對繞組比構(gòu)成限制。其中的一個次級繞組對初級繞組的匝比需為 1:1,同時 C1 必須與之相連接。在圖 1 所示的示例電路中,12-V 繞組的匝比為 1:1,但它可能已經(jīng)使用了 5-V 繞組作為替代。
本文引用地址:http://www.ex-cimer.com/article/180558.htm圖1 多輸出 SEPIC 轉(zhuǎn)換器圖 1 所示電路已經(jīng)構(gòu)建完成,并經(jīng)過測試。分別將其作為帶 C1 的 SEPIC 和沒有 C1 的反向轉(zhuǎn)換器運行。圖 2 顯示了兩種運行模式下的 MOSFET 電壓應(yīng)力。在反向模式下,MOSFET 漏極約為 40V,而在 SEPIC 模式下漏電壓僅為 25V。因此,反向設(shè)計不得不使用一個 40-V 或 60-V MOSFET,而 SEPIC 設(shè)計只需使用一個額定值僅為 30V 的 MOSFET。另外,就 EMI 濾波而言,高頻率(5 MHz 以上)振鈴將是一個嚴(yán)重的問題。完成對兩種電路的交叉穩(wěn)壓測量后,您會發(fā)現(xiàn) SEPIC 大體上更佳。兩種設(shè)計中,5 V 額定電壓實際值為 5.05 V,負(fù)載在 0 到滿負(fù)載之間變化,同時輸入電壓被設(shè)定為 12V 或 24V。SEPIC 的 12V 電壓維持在 10% 穩(wěn)壓頻帶內(nèi),而反向轉(zhuǎn)換器的 12V 電壓則上升至 30V(高線壓輸入,12V 無負(fù)載,5V 全負(fù)載)。如果根據(jù)低電壓應(yīng)力選擇功率部件,那么即使這兩種結(jié)構(gòu)的效率相同人們也會更傾向于使用 SEPIC。
圖2 SEPIC 極大地降低了 EMI 和電壓應(yīng)力。上圖沒有 C1,而下圖則安裝了 C1。總之,對非隔離式電源而言,SEPIC 是一種重要的拓?fù)浣Y(jié)構(gòu)。它將 MOSFET 電壓應(yīng)力鉗位控制在一個等于輸入電壓加輸出電壓的值,并消除了反向轉(zhuǎn)換器中的 EMI。減少的電壓應(yīng)力允許使用更低電壓的部件,從而帶來更高效率和更低成本的電源。EMI 的降低可以簡化最終產(chǎn)品的合規(guī)測試。最后,如果配置為多輸出電源,則其交叉穩(wěn)壓將優(yōu)于反向轉(zhuǎn)換器。
評論