如何實(shí)現(xiàn)高功率密度的工業(yè)電源
工業(yè)電源必需滿足一些特殊的要求,如低功耗(以減輕機(jī)箱冷卻方面的負(fù)擔(dān))、高功率密度(以減小空間要求)、高可靠性和高耐用性,以及其它在普通電源中不常見的特性,如易于并聯(lián)、遙控和某些過載保護(hù)功能等。同時(shí),它對EMI和穩(wěn)定性的要求也比其它應(yīng)用更為嚴(yán)格。本文詳細(xì)分析了一個(gè)400W電源的設(shè)計(jì)實(shí)例,闡釋了初級端和次級端電源模塊的運(yùn)用,以及其它提高性能的方法。除了在電氣方面的改進(jìn)外,模塊還采用統(tǒng)一的外形尺寸,便于實(shí)現(xiàn)精細(xì)緊湊的機(jī)械設(shè)計(jì)并減少安裝和物流成本。事實(shí)上,兩個(gè)模塊可具有不同額定功率,從而大大縮短了上市時(shí)間。
本文引用地址:http://www.ex-cimer.com/article/181389.htm功率因數(shù)校正級(PFC),加上總線或DC鏈路電容,對于許多無法單獨(dú)優(yōu)化的不同因素來說是十分關(guān)鍵的?,F(xiàn)在,大部分電源都采用了有源PFC電路,亦即升壓轉(zhuǎn)換器,確保輸入電流與輸入電壓同相,使輸入端的正弦波失真最小化,從而減小傳導(dǎo)EMI,實(shí)現(xiàn)寬輸入范圍(85VAC ~ 265VAC)。而且,這個(gè)升壓轉(zhuǎn)換器會(huì)根據(jù)輸入電壓調(diào)節(jié)自己的占空比和輸入電流,并把總線電容的電壓調(diào)節(jié)到350V ~ 400V。然而,如果升壓轉(zhuǎn)換器不是有源的(例如在啟動(dòng)狀態(tài)),電流可能流經(jīng)輸入整流器,進(jìn)入升壓電感和二極管,再到空的總線電容,最終產(chǎn)生很大的浪涌電流。要避免這一問題,需要額外的限流電路,否則可能觸發(fā)電網(wǎng)熔絲。在高可靠性或關(guān)鍵任務(wù)應(yīng)用中,由于對保持時(shí)間和節(jié)電保護(hù)的要求更嚴(yán)格,因此總線電容必須增大,這使得浪涌電流變得更大。在某些情況下,需要一個(gè)NTC電阻,但在“熱”啟動(dòng)(如停電)時(shí),NTC仍然很熱,不能提供保護(hù)。根據(jù)DIN-EN 61204標(biāo)準(zhǔn),測試方法針對兩種情況:70%的額定輸入電壓,20ms;以及40%的額定輸入電壓,100mS。第二種情況對沒有有源PFC的電源而言可謂相當(dāng)棘手。
脈寬調(diào)制級(PWM)是主要的轉(zhuǎn)換器級。其中DC電壓被斬波為更高頻率的方波,因此利用更小的變壓器就可以轉(zhuǎn)換到另一個(gè)電壓級并提供隔離。并非所有的拓?fù)涠疾捎谜伎毡茸兓姆讲ǎ行┩負(fù)洳捎玫氖亲冾l,還有的則是改變兩個(gè)脈沖序列之間的相位。這一級主要確定轉(zhuǎn)換器的效率和負(fù)載調(diào)節(jié)。轉(zhuǎn)換器效率十分重要,首先它關(guān)系電源的運(yùn)行成本;其次是必須通過機(jī)箱冷卻來散除產(chǎn)生的熱量;第三是熱組件越大,就越昂貴,占用空間也越大。這三個(gè)因素與電源的使用壽命成本關(guān)系重大。
圖1 工業(yè)電源的各個(gè)不同級及每級的主要特性
轉(zhuǎn)換器拓?fù)涞倪x擇對效率和輻射EMI都至關(guān)重要,因?yàn)楣β书_關(guān)越傾向于硬開關(guān),產(chǎn)生的dI/dt和dV/dt就很大,同時(shí)電流和電壓就越高,這會(huì)導(dǎo)致開關(guān)頻率諧波的大量產(chǎn)生。在各種拓?fù)渲?,諧振或準(zhǔn)諧振拓?fù)涠碱H具優(yōu)勢但較難設(shè)計(jì),尤其是諧振拓?fù)?,很難在寬泛的負(fù)載范圍上實(shí)現(xiàn)。下文中描述的LLC拓?fù)渚哂性趯捸?fù)載范圍內(nèi)有限的開關(guān)頻率變化以及軟開關(guān),很容易解決這一問題。
PWM級也是所有必須保護(hù)功能的核心所在。在電流模式轉(zhuǎn)換器的情況下,逐周期限流器可保護(hù)電源免受大部分輸出問題的傷害,這些問題通常與熱關(guān)斷有關(guān)。
同步整流級(SR)把變壓器產(chǎn)生的交流電壓轉(zhuǎn)換回直流電壓。由于電壓很低,電流往往相當(dāng)高,故整流器的傳導(dǎo)損耗必須最小化。若采用硅PN結(jié)二極管可以獲得0.7V的正向電壓,則采用肖特基二極管可達(dá)到0.4V。要獲得更低的電壓級就需采用MOSFET,這時(shí)電壓級由導(dǎo)通阻抗RDS(ON) 和輸出電流決定,且比前兩種情況要低得多。但因?yàn)镸OSFET是有源器件,故需要一個(gè)適當(dāng)?shù)臇艠O驅(qū)動(dòng)信號(hào)來完成,如果設(shè)計(jì)良好,這一級的功耗可大幅度減小,從而進(jìn)一步提高效率。此外,利用先進(jìn)的低電感封裝技術(shù),設(shè)計(jì)還可以非常緊湊耐用。
連續(xù)傳導(dǎo)模式(CCM)功率因數(shù)校正
輸入整流器(圖2中沒有EMI濾波器)產(chǎn)生的輸入電壓被饋入到PFC電感中,此時(shí)后者的次級線圈為PFC控制IC提供供電電壓。電感前面的電阻/電容網(wǎng)絡(luò)可對輸入電壓進(jìn)行采樣。電感之后是帶柵極保護(hù)電路的電源開關(guān),PFC整流器為StealthTM 二極管。接下來使用一個(gè)電阻分壓器來感測和調(diào)節(jié)PFC級的輸出電壓,反饋回路至此結(jié)束??偩€電容也如圖2所示,而二極管D1是一個(gè)額外的保護(hù)器件。
圖2 PFC級的原理示意圖
這里采用的控制器是FAN4810,該器件包含了先進(jìn)的平均電流“升壓”型功率因數(shù)校正實(shí)現(xiàn)電路,電源因此能夠完全滿足IEC1000-3-2規(guī)范的要求。它還包含了TriFault Detect功能,有利于確保不會(huì)因PFC中單個(gè)組件的故障造成不安全事件。1A的柵極驅(qū)動(dòng)器又極大降低了對外部驅(qū)動(dòng)器電路的需求。此外,它的功率要求很低,既提高了效率也降低了組件成本。該P(yáng)FC還帶有峰值限流、輸入電壓中斷保護(hù)功能,還有一個(gè)過壓比較器,可在發(fā)生負(fù)載突然減小事件時(shí)關(guān)斷PFC部分。時(shí)鐘輸出信號(hào)可用來同步下游的PWM級,以減少系統(tǒng)噪聲。
評論